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Vorwort

Mathematik ist eine Wissenschaft mit einer Struktur, die im Laufe der Zeit
riesige Dimensionen erreicht hat. Diese unglaublich hohe Burg besitzt nur
ein ganz schmales Fundament und ihre Festigkeit griindet sich auf einfachem
pradikatenlogischen Mortel. Im Prinzip kann der Aufbau von jeder Mathemati-
kerin verstanden werden. Von dem neuesten Gipfel mathematischer Erkenntnis
kann jeder Pfad logisch folgerichtig bis in die mengentheoretischen Wurzeln
nachvollzogen werden.

Bei diesem Unternehmen will dieses Dokument Hilfestellung geben. Ziel ist ei-
ne Présentation der mengentheoretischen Wurzeln in versténdlicher Weise. Bei
aller Versténdlichkeit soll es jedoch jederzeit moglich sein, tief in die Details
einzusteigen, ja sogar bis auf die Ebene eines formal korrekten Beweises hinab.
Dazu soll es dieses Dokument in verschiedenen Detaillierungen geben. Fiir al-
le aber gilt, dass die Formeln in Axiomen, Definitionen und Propositionen in
formal korrekter Form vorliegen.

Wir wollen bei den Wurzeln anfangen. . .

Dieses Dokument ist im Entstehen begriffen und wird von Zeit zu Zeit aktuali-
siert. Insbesondere werden an den durch ,,+++* gekennzeichneten Stellen noch
Erginzungen oder Anderungen vorgenommen.

Besonderer Dank geht an meine Frau Gesine Drdger und unseren Sohn Lennart
fiir ihre Unterstiitzung und ihr Verstéindnis fiir ihnen fehlende Zeit.

Hamburg, Januar 2013
Michael Meyling
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Einleitung

In diesem Dokument nutzen wir die Ergebnisse aus http://www.qedeq.org/
0_04_05/doc/math/qedeq_logic_vi_de.pdf [I]. Nachdem durch die Logik die
Art der mathematischen Argumentation vorgegeben wird, wird in der Mengen-
lehre ganz allgemein iiber Objekte und ihre Zusammenfassungen gesprochen.
Besonders interessant ist die Mengenlehre dadurch, dass sie zum einen von ei-
gentlich allen mathematischen Disziplinen verwendet wird. Zum anderen l&sst
sich jede mathematische Disziplin innerhalb der Mengenlehre definieren. Zahlen-
theorie, Algebra, Analysis und alle weiteren Gebiete lassen sich darauf aufbauen.

Dieses Dokument beschreibt die mathematischen Grundlagen der Mengenleh-
re. Ziel ist dabei die Bereitstellung von elementaren Ergebnissen der Mengen-
lehre, die in anderen mathematischen Disziplinen benétigt werden. Nach den
Grundlagen wird die Boolsche Algebra der Klassen betrachtet. Es schliessen
sich Betrachtungen iiber Relationen und Funktionen an. Ein weiteres wichti-
ges Ergebnis sind die Definition der natiirlichen Zahlen und die Erfiillung der
Peano-Axiome durch diese, auch auf den Begriff der Rekursion wird eingegan-
gen. Anschlieflend wird das Auswahlaxiom behandelt. Am Schluss geht es um
das Kontinuum.

Die Darstellung erfolgt in axiomatischer Weise, soll aber im Ergebnis der mathe-
matischen Praxis entsprechen. Daher wird auch das Axiomensystem der Men-
genlehre von A. P. Morse und J. L. Kelley (MK) verwendet. Der Aufbau lehnt
sich stark an das exzellente und sehr empfehlenswerte Buch von E. J. Lem-
mon [2] an.


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf
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Kapitel 1

Anfangsgriinde

In diesem Kapitel beginnen wir mit den ganz elementaren Axiomen und De-
finitionen der Mengenlehre. Wir versuchen nicht, eine formale Sprache ein-
zufithren,! und setzen das Wissen um den Gebrauch von logischen Symbolen
voraus. Noch genauer formuliert: wir arbeiten mit einer Priadikatenlogik erster
Stufe mit Identitét.

G. Cantor, der als Begriinder der Mengenlehre gilt, hat in einer Verdffentlichung
im Jahre 1895 eine Beschreibung des Begriffs Menge gegeben.

Unter einer ,Menge® verstehen wir jede Zusammenfassung M von
bestimmten wohlunterscheidbaren Objekten m unserer Anschauung
oder unseres Denkens (welche die ,,Elemente“ von M genannt wer-
den) zu einem Ganzen.

Diese Zusammenfassung kann iiber die Angabe einer Eigenschaft dieser Elemen-
te erfolgen. Um 1900 wurden verschiedene Widerspriiche dieser naiven Mengen-
lehre entdeckt. Diese Widerspriiche lassen sich auf trickreich gewihlte Eigen-
schaften zuriickfiihren.

Es gibt verschiedene Méglichkeiten diese Widerspriiche zu verhindern. In diesem
Text schrinken wir zwar die Angabe von Eigenschaften in keiner Weise ein,
aber wir nennen das Ergebnis der Zusammenfassung zunéchst einmal Klasse.
Zusitzliche Axiome regeln dann, wann eine bestimmte Klasse auch eine Menge
ist. Alle Mengen sind Klassen, aber nicht alle Klassen sind Mengen. Eine Menge
ist eine Klasse, die selbst Element einer anderen Klasse ist. Eine Klasse, die
keine Menge ist, ist nicht Element irgend einer anderen Klasse.

1.1 Klassen und Mengen

Obgleich wir im Wesentlichen iiber Mengen sprechen wollen, haben wir am
Anfang nur Klassen. Dieser Begriff wird nicht formal definiert. Anschaulich ge-
sprochen, ist eine Klasse eine Zusammenfassung von Objekten. Die beteiligten
Objekte heiflen auch Elemente der Klasse. Mengen werden dann als eine beson-
dere Art von Klassen charakterisiert.

1Dessen ungeachtet sind die Formeln der Axiome, Definitionen und Propositionen in dem
Ursprungstext dieses Dokuments in einer formalen Sprache notiert. Der Ursprungstext ist eine
XML-Datei, deren Syntax mittels der XSD http://www.qedeq.org/current/xml/qedeq.xsd
definiert wird. Eine ndhere Beschreibung der Formelsprache ist unter http://www.qedeq.org/
current/doc/project/qedeq_logic_language_de.pdf zu finden.


http://www.qedeq.org/current/xml/qedeq.xsd
http://www.qedeq.org/current/doc/project/qedeq_logic_language_de.pdf
http://www.qedeq.org/current/doc/project/qedeq_logic_language_de.pdf
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Die folgenden Definitionen und Axiome folgen dem Aufbau einer vereinfachten
Version der Mengenlehre nach von Neumann-Bernays-Gidel (NBG). Die genaue
Bezeichnung lautet MK nach Morse-Kelley.

Die hier vorgestellte Mengenlehre hat als Ausgangsobjekte Klassen. Weiterhin
wird nur ein einziges Symbol fiir eine bindre Relation vorausgesetzt: der Ent-
haltenseinoperator.

Initiale Definition 1 (Elementbeziehung). wetinition:in

rey

Wir sagen auch ,x ist Element von y*“, ,x gehort zu y*“, ,x liegt in y“oder
auch ,x ist in y“. Neben der Identitédt ist dies das einzige Pradikat welches
wir zu Beginn haben. Alle anderen werden definiert. Auch Funktionskonstanten
haben wir zu Anfang nicht, ihre Bedeutung wird sukzessive im weiteren Verlauf
festgelegt.

Obgleich wir die Elementbeziehung einfach negieren kénnen, méchten wir dafiir
eine Abkiirzung definieren.

Definition 2 (Negation der Elementbeziehung). tetinision:nostal

r¢y < wey

Unser erstes Axiom besagt, dass beliebige Klassen x und y identisch sind, wenn
sie dieselben Elemente enthalten.

Axiom 1 (Extensionalitit). taxion:extensionatity)

Vz(z€x o z€y) - = =y

Die Klassen x und y kénnen verschieden definiert sein, beispielsweise:

x = Klasse aller nichtnegativen ganzen Zahlen,
y = Klasse aller ganzen Zahlen, die als Summe von vier Quadraten ge-
schrieben werden kénnen,

aber wenn sie dieselben Elemente besitzen, sind sie identisch.

Nun zu unserer ersten Proposition. In dem Extensionalititsaxiom konnen wir
die Implikation umkehren.

PI'OpOSitiOI’l 1. [theorem: extensonalityEquivalence]

Vz(z€x o z€y) o x =y

Beweis. Dies ist eine einfache Anwendung des zweiten identitétslogischen
Axioms. Wir setzen x = y voraus. Nun folgt ¢(x) « ¢(y) fir jedes Pradikat
¢. So bekommen wir z € x < 2z € y fiir beliebiges z. Also haben wir
Vzzerx— zey. Damit geigten wirx =y — Vzzex < 2z €y.
Zusammen mit dem Axiom 1 erhalten wir das gewiinschte Ergebnis. O

Falls wir das Identitdtspradikat nicht als logisches Symbol voraussetzen wiirden,
dann wiirden wir es hiermit definieren. Aber dann wird auch ein weiteres Axiom
bendtigt und es ergeben sich technischen Schwierigkeiten bei der Herleitung der
Identit#itsaxiome.?

Jetzt legen wir fest, was eine Menge ist.

2Zusitzlich zur Definition der Identitéit muss das Axiom der Extensionalitit in folgender
Formulierung treten: (zx = y Az € z) — y € z. Das ist ein Spezialfall der Leibnizschen
Ersetzbarkeit, die wir bereits als Axiom 8 [1] kennen. Die Giiltigkeit im allgemeinen Fall kann
durch Rekursion iiber den Aufbau der Formeln nachgewiesen werden. Siehe auch [4] §6.

Alternativ kénnen wir definieren (z =y <— (Vz (z €2z — y€2))AVz (z €2z — zE€y)).


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#axiom:leibnizReplacement
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Definition 3 (Menge). [definition:isSet]

M(r) < Jyxey

Mengen sind also nichts anderes als Klassen mit einer besonderen Eigenschaft.
Eine Klasse ist genau dann eine Menge, wenn sie Element irgendeiner Klasse
ist.

Eine triviale Folgerung aus dieser Definition ist die folgende Aquivalenz.

PI‘OpOSitiOl’l 2. [theorem: inSetEqualInSetAndIsSet]

rey « M) N ze€y)

Beweis. ‘=’: Sei x € y. Es folgt 3 u « € v und daher M(x) und logisch M(x) A
x e y.

‘<" Aus M(z) Az € y schlieBen wir x € y. O

Nun kénnen wir das Extensionalititsaxiom wie folgt schreiben.?

PI‘OpOSitiOH 3. [theorem:extensionalitySetRestricted]

x =y o VM(z) (2€x < z€y)

Beweis. ‘=’: Genauso wie im Beweis zu Proposition 1 erhalten wir die erste
Implikation mit dem zweiten identitdtslogischen Axiom.

‘<": Angenommen es gelte V M(z) (z € x < =z € y). Sei u eine beliebige
Klasse. Falls v € x dann gilt u ist eine Menge nach Definition 3, und daraus
folgt mit der Annahme u € y. Analog folgt u € y — wu € x. Da u beliebig,
haben wir Vu (v € £ < u € y). Und mit dem Axiom 1 erhalten wir daraus

T =1y. O
Beweis.
r=y < z(z€x « z€y) dies ist Proposition 1
- (Em(z) Nz€x « M2z ANz ey) Proposition 2
— z(M(z)— (z€x « z€y)) Proposition 1 (bh) [1]
— M(z) z€x < zE€y) Axiom 11 [1]
O

Unser néchstes Axiom der Mengenlehre erméglicht uns in simpler Art und Weise
neue Klassen zu bilden. Eine Klasse wird ganz einfach durch die Angabe einer
pradikatenlogischen Formel charakterisiert.

Axiom 2 (Komprehension). tasion:comprenension]

JzVy (yex <« My) N 6(y)))

Durch eine kleine Anderung dieses Axioms wiirden wir im Folgenden ein NBG-
Axiomensystem der Mengenlehre erhalten, welches auf John von Neumann,
Isaak Bernays und Kurt Gddel zuriickgeht. Dazu definieren wir: eine Formel,
in der alle gebundenen Subjektvariablen auf Mengen restringiert sind, wird
prddikative Formel genannt. Priadikative Formeln formalisieren also diejenigen

3Es wird ein eingeschrinkter Allquantor benutzt, z lduft nur iiber Mengen.


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/bh
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#axiom:restrictedUniversalQuantifier
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Eigenschaften, die man als , Eigenschaften von Mengen“ bezeichnen kann.* For-
dern wir nun also zusétzlich, dass ¢ pradikativ sein muss, dann erhalten wir ein
NBG-System?®.

Durch das Komprehensionsaxiom und die Extensionalitit wird nun der Zu-
sammenhang zwischen einer Aussage ¢(y) und der durch sie definierten Klasse
festgelegt. Dabei behauptet das Komprehensionsaxiom die Existenz mindestens
einer Klasse, deren Elemente die Aussage 9M(y) A ¢(y) erfiillen. Das Extensiona-
litdtsaxiom und die Identitéitsaxiome sichern ab, dass es hochstens eine solche
Klasse gibt: irgend zwei Klassen, welche dieselben Elemente besitzen, sind gleich
im Sinne der Ersetzbarkeit in allen einschldgigen Aussagen. Mit anderen Wor-
ten: es gibt nur genau eine solche Klasse.

Proposition 4. tmeoren:comprenension
Mz Vy (yez — My) A o))

Beweis. Zu zeigen ist:

Jr Yy (y€x— My) Ady))
AVuYv  (Vy (y €ue My) Ad(y) A Yy (yeve My)Ady)))

—>u:’U)

Seien u und v beliebig. Es gelte weiterhin:

Yy (y € ue My) Ad(y)) A Yy (y € v = My) Ad(y)))
Dann folgt mit Proposition 2 (h) [1]: Yy ((y € u < M(y) A d(y)) A (y € v —
My) A 6(y)))

Daraus erhalten wir mit Proposition 1 (bg) [1]: Vy ((y € v <> y € v)). Und mit
Proposition 1 folgt nun v = v. Also haben wir gezeigt:

Vu Vo (Vy (y € u < My) Ad(y)) A Yy (y € v o M(y) Ad(y))) —u=v)

Zusammen mit dem Axiom 2 folgt nun die Behauptung. O

Ausgehend von Proposition 4 kénnen wir die Sprachsyntax erweitern und eine
neue abkiirzende Schreibweise einfiihren.

Regel 1 (Klassenschreibweise). true:ciasspetinition

Name: CLASS_DEFINITION_BY_FORMULA - Version: 1.00.00

Fiir jede Formel a(x1) definieren wir den Termausdruck {z1 | a(x1)}, wobei a4
eine Subjektvariable ist, die in a(x1) nicht gebunden ist. Die freien Variablen
von {z1 | a(x1)} sind die freien Variablen von o(xz1). Die gebundenen Variablen
entsprechen den gebundenen Variablen von «(x1) erginzt um x;.

Alle Ableitungsregeln werden entsprechend erweitert.

Basierend auf: Proposition 4

Insbesondere miissen die Substitutionsregeln {iberpriift werden, weil ein Term
nun auch gebundene Subjektvariablen enthalten kann.® Im Folgenden wird auf
diese neue Schreibweise zuriickgegriffen.

Wir wollen der neu eingefiithrten Syntax eine Bedeutung geben, und nach einem
Blick auf Proposition 4 fiithren wir das folgende Axiom ein.

4Noch etwas formaler: in einer pridikativen Formel laufen alle Quantorenvariablen nur
iiber Mengen: V D(z) 3 M(y) ...

5Dazu werden noch einige andere Axiome — analog zu den folgenden — bendtigt

6Gliicklicherweise haben wir das jedoch schon bei der Formulierung unserer Substitutions-
regeln beriicksichtigt, so dass wir nichts tun miissen.


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:predicateCalculus/h
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/bg
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Axiom 3 (Axiom der Klassenschreibweise). taxion:ciasspetinision
yele|o(@)} <= (My) A oy))

Dies Axiom zusammen mit Regel 1 fithrt nur zu einer konservativen Erweiterung
unserer formalen Sprache. Das bedeutet, dass mit der Erweiterung nicht mehr
Formeln, die der alten Syntax geniigen, abgeleitet werden kénnen. Es ist nur

bequem, eine neue elegante Schreibweise zu besitzen.”.

Die neue Schreibweise kann auch in einfacher Weise in die alte Syntax transfor-
miert werden. Die Giiltigkeit der Ausgangspridikate driickt sich fiir diese neue
Termart wie folgt aus.

PI‘OpOSit 10N 5. (theorem:setiotation]

ze{z [ o(z)} < (M(2) A 6(2))
z=A{z] ()} < Vu(uez o ue{r|o()})
{z]o(@)} = {y|v@)} < Vu(ue{z|d@)} < uely]
{zo@)}ely v} < YuVo ((u = {z[o(@)} A v
{v v} — uew)
{zlo@)}ez < Vu(u = {z]o(x)} — uez) ()

w_(y)})

+++ wenn diese Formel richtig gesetzt wiirde, sollte sie so aussehen:

y € {z [ o)} < My) A o(y) (a)
y=A{z[¢(@)} =Vz (zey—ze{z|o(@)}) (b)
{z ] (@)} ={z [ P(2)} = Vz (z€{x | ¢(z)} (c)
—ze{r|P()})
{z [ ¢(2)} € {z [ (@)} = Vu Vo ((u={z] o)} (d)
A v={z|¢(@)}) —uew)
{z [ o)} cy=Vu(u=A{z]d@)} —uecy) ()

Beweis. Die Formel in a) ist einfach Axiom 3. Mit Proposition 1 erhalten wir
b) und c¢). Mit den Identititsgesetzen bekommen wir d) und e). O

Durch sukzessives Anwenden des obigen Satzes kann also die neue Syntax in die
alte {iberfithrt werden.

Da durch die neue Schreibweise ein Term eindeutig festgelegt wird, muss

natiirlich auch das Folgende gelten.

PI‘OpOSitiOD 6. [theorem:setDefinitionUnique]
Az z = {y | oy}

Beweis.
NaxVz(zex « M) A¢(z)) dies ist Proposition 4
NaVz(zex —-ze{y|¢(y)} Proposition s

Nzz={y| o)} Proposition 1
O

Aus der Aquivalenz von Aussageformen kann auf die Gleichheit der daraus ge-
bildeten Klassen geschlossen werden.

"Unter einer konservativen Erweiterung verstehen wir das Folgende: Sei £ eine Sprache
und £ eine Erweiterung von £. Da £ D £ gilt auch Formelg, D Formelg. Falls nun fiir jede
Formelmenge I' C Formelg und jede Formel o € Formelg gilt: I' For @ = I' kg o, dann
heiflt £ eine konservative Erweiterung von £.
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PI‘OpOS itiOIl 7. [theorem: propositionEqualImplClassEqual]

Ve (¢(z) = ¢(@) — {z]o(@)} = {z|4()}

Beweis.
(¢(z) < (@) =  (o(x) ANM(x) < ¢(x) AM(x)) Proposition 1 (bl) [1]
Vo ((¢(x) < () ( (@) AM(z) < Pp(x) AM(x)))  Reger 11 1]
vz (¢(z) < ¢(x)) z (o(z) AIM(z) < P(x) AIM(T))  Proposition 2 () 1)

)
(x € { |¢( )} — T e {y\w(y)}) Proposition 5

yloly
{v o)} =A{v v} Proposition 5

O

Die Umkehrung gilt jedoch nicht. Das liegt daran, dass mit der Klassenschreib-
weise nur Mengen zusammengefasst werden. Beispiel: wenn ¢(z) < = # x und
Y(x) =Yy (y € x — y ¢ y), dann sind die durch beide Aussageformen erzeug-
ten Klassen identisch mit der leeren Klasse (Definition 6). Keine Klasse erfiillt
¢(z), allerdings erfiillt die Russellsche Klasse (Definition 4) die Bedingung 1 (x).

Jede Klasse ldsst sich durch eine Aussage beschreiben, indem auf ihre Elemente
Bezug genommen wird.

PI‘OpOSitiOl’l 8. [theorem:classDescriptionPossible]

= {ylyex}
Bewets.
z€x < z€xAM(z) Proposition 2
zex < ze{yly} Proposition 5
Vz(zex < ze{yly})  Regel 11 [1]
x = Hyl|y} Proposition 1
O
1.2 Spezielle Klassen
In diesem Abschnitt definieren wir die ersten Klassen.
Die Russellsche Klasse kann nun einfach definiert werden.
Definition 4 (Russell-Klasse). wetinision:russericrass]
Ru = {z |z ¢z}
Die Russellsche Klasse ist eine echte Klasse, d. h. sie ist keine Menge.
PI‘OpOSitiOI’l 9. [theorem:RussellClassIsClass]
- (Ru)
Bewets.
ye{z| ¢(x)} - M(y) A d(y) das ist Proposition 5
ye{z |z ¢z} — My) ANy ¢y Substitution fiir ¢
y € Ru — My) ANy ¢y Definition 4
Ru € Ru — M(Ru) A Ru ¢ Ru Substitution fiir y
M(Ru) A Ru € Ru - M(Ru) A Ru ¢ Ru  Proposition 2
—M(Ru) Proposition 1 (bi) [1]

O


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/bl
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:derivedQuantification
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:predicateCalculus/a
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:derivedQuantification
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/bi

1.2. SPEZIELLE KLASSEN 15

Die Allklasse soll alles mogliche umfassen.

Deﬁnition 5 (Allklasse). [definition:universalClass]

U = {z|z = a}

Da in einer Klasse nur Mengen als Elemente vorkommen, verwundert es nicht,
dass folgendes gilt.

PI‘Op OSit iOn 1 0 + [theorem:isInUniversalClass]

r €Y — Mx)
Beweis.
ze{y|oy)r < Mx)Ap(x) dies ist Proposition 5
ze{yly=y} < Mx)Ay=y Substitution fiir ¢
r€Y — Mx)Ay=y Definition 5
€Y «— Mx) Proposition 1 (au) [1] und Axiom 7 [1]

O

Mitgliedschaft in der Allklasse ist daher gleichbedeutend mit der Eigenschaft,
eine Menge zu sein.

Die Allklasse umfasst alle Mengen.

PI‘Op 0sition 11. tineoren:universaiciasscontainsAlisets]

T = {z|M(x)}

Beweis.

¥ = {z|z=x} Definition 5
Vy(yeW < ye{x|xz=x} Proposition 1
Yy (yel «— My Ay=y Proposition 5
Yy(yel « My AT Regel 10 [1]
Yy(yel < My) Proposition 1 (au) [1]
Yy(yel < M(y) AMy) Proposition 1 (al) [1]
Vy(yel «— ye{z]|Mx)} Proposition 5

T = {z|M=x)} Proposition 1

O

Entsprechend definieren wir die leere Klasse. Spater werden wir feststellen, dass
die leere Klasse eine Menge ist. Dazu benétigen wir jedoch weitere Mengenaxio-
me. Wir bezeichnen diese Klasse jedoch schon jetzt mit den Worten leere Menge.

Definition 6 (Leere Klasse). wetinition:enptysets
0 = {x|x # z}

Keine Klasse ist Element der leeren Klasse.

PI‘Op osition 12. [theorem:noClassIsMemberOfEmptySet]

Vzzée(

Beweis. Annahme: z € ()
z€{x|x#x} Definition 6
M(z) Nz #z Axiom 3

z#z elementary logic
- (z2=2) Definition 4 [1]


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/au
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#axiom:identityIsReflexive
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:replaceTrueFormulaByTrue
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/au
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/al
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#definition:notEqual
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Damit haben wir einen Widerspruch zu Axiom 7 [1] und unsere Annahme muss
falsch sein. Also gilt =(z € ) und wir kénnen weiter folgern.

- (z€0)
z¢ () Definition 2
Vzz¢ 0 Regel 11 [1]

Eine Klasse, welche keine Elemente besitzt, ist die leere Klasse.

Proposition 13. twmeoreninociasstswenveristaptyset]

Vzzédax < xz =0

Beweis.
z=0 < Vz(z€xz< z€el) Proposition 1
— Vz(z¢z<2¢0) Regel 8 [l] mit Proposition 1 (ao) [1]
o Vz(z¢zxe T) Proposition 12
— Vzzédcx Regel 8 [1] mit Proposition 1 (be) [1]

O


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#axiom:identityIsReflexive
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:derivedQuantification
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:replaceEquiFormula
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/ao
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:replaceEquiFormula
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/be

Kapitel 2

Boolesche Algebra der
Klassen

Die elementaren Operationen von Klassen und ihre Eigenschaften werden nun
beschrieben.

Eine Boolesche Algebra, oft auch Boolescher Verband genannt, ist eine spezielle
algebraische Struktur, die die Eigenschaften der logischen Operatoren und, oder,
nicht sowie die Eigenschaften der mengentheoretischen Verkniipfungen Durch-
schnitt, Vereinigung und Komplement abstrahiert.

Sie ist benannt nach G. Boole, der sie in der Mitte des 19. Jahrhunderts defi-
nierte, um algebraische Methoden in der Aussagenlogik anwenden zu kénnen.

2.1 Boolesche Klassenoperatoren

Die Klassenschreibweise Regel 1 ermdoglicht die Definition von Klassenoperato-
ren mithilfe logischer Verkniipfungen.

Die Vereinigung zweier Klassen besteht aus den Elementen beider Klassen.

Definition 7 (Vereinigung). wetinision:union)

(xUy) = {z](z€x VvV z€y)}

Entsprechend wird der Durchschnitt zweier Klassen definiert, als die Klasse, die
aus den Elementen besteht, die in beiden Klassen vorhanden sind.

Definition 8 (Durchschnitt). wetinision:intersection
(xny) = {z|(zez A zey)}

Auch das Komplement einer Klasse kann einfach definiert werden.

Definition 9 (Komplement). esinition: conprenent]
T = {z|z¢z}

Ob eine Menge ein Element der Vereinigung zweier Klassen ist, kann natiirlich
auch direkt angegeben werden.

Proposition 14. ttheoren:unionMenber]

17
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z€(xUy) « (€2 V z€y)

Beweis.

(zUy) = {z|(zexVvzey)} Definition 7
ve(xUy) < ue{z|(zeaxVzey)} Proposition 3 [1]
ue€(zVUy) < Mu)A(ucxVuey)) Axiom 3
ue€ (zVUy) < (Mu)Auvex)V (Mu)Aucy)) Proposition 1

(at) [1]
ue(zUy) < (uezxVuecy) Proposition 2
O
Entsprechendes gilt fiir den Durchschnitt zweier Klassen.
Proposition 15. twmeoren:intersectiontenver]
z€(zNy) « (z€x N z€y)
Beweis.

(xny) = {z](z€exnzey)} Definition 7
ue(znNy) < wue{z|(zexAzey)} Proposition 3 [I]
ue(zny) < MuA(ueczxAuecy)) Axiom 3
ue(znNy) < ((Mu)Auez)Auecy)) Proposition 1 (aj) [1]
vue(zNy) < (WETAuUEY) Proposition 2

O

Analoges gilt fiir das Komplement, dort muss jedoch die Mengeneigenschaft
explizit abgepriift werden.

PI'OpOSitiOI’l 16. [theoren: complementMember]

Z2E€ET < M(2) N z¢x)

Beweis.
T = {z|z¢ax} Definition 9
UET u€{z|z¢ax} Proposition 3 [1]

wueET < (Mu)Aué¢z) Axiom 3
O

Die vorherigen Sitze zeigen die Ubertragbarkeit der Eigenschaften der logischen
Verkniipfungen V, A und — auf die Klassenverkniipfungen U, N und ~. Deshalb
lassen sich die entsprechenden logischen Gesetzmissigkeiten direkt auf die Klas-
senverkniipfungen iibertragen.

PI‘OpOSitiOI‘l 17. [theorem:unionIntersectionComplement]

(zUy) = (yUx) (a)

(ny) = (yNa) (b)
(zUy)Uz) = (zU(yU2)) (c)
(zny)nz) = (@n(ynz)) (d)
z = (zUx) (e)

T = (xNzx) ()

T =z (8)

(zUy) = (zNY) (h)

(zny) = (TUY) (i)
(zU(yNz) = ((zUy)N(zUz)) (i)
(zN(yUz) = ((zNny)U(znz)) (k)
0 =2 (1)


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:leibnizEquivalence
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:leibnizEquivalence
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/aj
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:leibnizEquivalence
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T =0 (m)
(xNY) = =z (n)
(zn®) =0 (o)
(zUD) = T (p)
(U0 = 2 (@
(zUT) = T (r)
(znz) = 0 (s)
Beweis. Exemplarisch beweisen wir (g).
ueET (sm( )Au € x) Definition 9
— (Lv((u) Au € x)) Proposition 1 (ax) [1]
= ((M(u) A=IM(u) V (M(u) Au € x)) Proposition 1 (az) [1]
o (Mu) A (=M(u) Au € x)) Proposition 1 (at) [1]
o (M(u) A (=M(uw)) A - € x)) Proposition 1 (am) [1]
= (M(u) A (5M(w) A —u ¢ x)) Definition 2
= (M(u) A=(M(u) Vu ¢ x)) Proposition 1 (aq) [1]
= (Mu)A—(ue€T)) Proposition 16
— (fm(u) ANu & T) Definition 2
— €T Proposition 16
Also haben wir gezeigt: u € x «» u € T Nun kénnen wir weiter schliefen.
UET — UET
Vu(uez < uweT) Regel 11 [1]
Yuu€xr <« VYuu€T Proposition 2 (c) [1]
xr = T Proposition 3
O

2.2 Boolsche Algebra

Die Klassen bilden mit den Operatoren N, U, ~ und den Konstanten @), %0 eine
Boolesche Algebra.

++4+ Referenzen zu Kommutativitit, Assoziativitit, Distributivitdt, Idempo-
tenz, etc.

2.3 Ordnung

Fiir eine Boolsche Algebra kann eine kanonische Teilordnung definiert werden.
Daher kénnen wir auch fiir die Klassenalgebra eine Teilordnung festlegen.

Wir definieren die Teilklassenrelation durch eine Schnittklassenbildung.
Definition 10 (Teilklasse). tetinisionssunciass)
T Cy o (@ny) =
Sind x und y Mengen sagen wir auch: x ist Teilmenge von y.
Die iibliche Definition der Teilklassenrelation erhalten wir nun als Satz.

PI‘Op Osit iOIl 1 8 o [theorem:subsetIfMemberschipImpl]

x Cy o Vz(zex — z€y)


http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/ax
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/az
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/am
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:propositionalCalculus/aq
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#rule:derivedQuantification
http://www.qedeq.org/0_04_05/doc/math/qedeq_logic_v1_de.pdf#theorem:predicateCalculus/c
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Diese Relation ist reflexiv, transitiv und antisymmetrisch, definiert also eine
Teilordnung mit @) als kleinstem und U als grofitem Element.

PI‘OpOSitiOH 19. [theorem:subsetIsPartialOrdered]

r Cx (a)
(@ CyrycCz —ac:z (b)
(@CynyCae) oax=y ()
D Ca (d)
x C % (e)
2 C 0 — =0 (f)
UV C 2z — =197 (g)
Eine Schnittklasse ist immer Teilmenge ihrer Ausgangsklassen.
Proposition 20. tmeoren:intersectiontssunset]
(zNy) C = (a)
(zNy) Sy (b)
Eine Vereinigungsklasse hat ihre Ausgangsklassen als Teilklassen.
Proposition 21. twmeoren:uiontssuperset]
z C (zUy) (a)
y € (zUy) (b)

Fiir zwei Teilklassen ist auch die Vereinigungsklasse Teilklasse. Und falls eine
Klasse Teilklasse von zwei Klassen ist, dann ist sie auch Teilklasse der Schnitt-
klasse. Beide Beziehungen sind auch umkehrbar.

PI‘OpOSitiOIl 22. [theoren:subsetAndAddition]

(x 2)

y o (zU
(z zCy <o zC (@

NN

z N
r A

NN

Bei Schnitt oder Vereinigung bleibt eine Teilklassenbeziehung erhalten.

PI‘OpOSitiOIl 23. [theorem:subsetAddition]

NN

— (xU2)
— (zN2z)

NN
<

-

&

(a)
(yN=2) (b)

z Y
z Y
Bei der Bildung des Komplements kehrt sich die Teilklassenbeziehung um.
Proposition 24. twmeoren:sunsetconprenent]

r Cy—oyCx
Fiir das Komplement und die Teilklassenbeziehung gelten die folgenden

Aquivalenzen.

Proposition 25. twmeoren: subsetconplenentEquations]

r Cy < (xny) =0 (a)
r Cy < (TUy) =T (b)
r CyY e (zny) =0 (c)
(xNy) € z & = C (FU2) (d)
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2.4 Einerklassen und Klassenpaare

Eine Klasse kann auch durch explizite Auflistung ihrer Elemente definiert wer-
den.

Insbesondere kann durch Angabe eines Elements die sogenannte Finerklasse
festgelegt werden. Wiederum mit Regel 1 kénnen wir die Sprachsyntax erweitern
und eine neue abkiirzende Schreibweise einfiihren.

Definition 11 (Einerklasse). twetinition:singteton
{z} = {y|M(z) — y = )}

Da der Ausdruck {z} fiir jegliches x definiert ist, kann er auch fiir den Fall, dass
x eine echte Klasse ist, gebildet werden. In diesem Fall erfiillen alle Mengen
y die Bedingung M(y) A (M(z) — y = z) und die Einerklasse ist mit der
Allklasse identisch. Das fithrt zu einem technisch einfacheren Umgang mit der
Einerklasse.!

Fiir Mengen enthélt die Einerklasse wie gewiinscht nur die Menge selbst.

P ropos ition 26. [theorem:setSingletonHasSetAsOnlyElement]

Mx) — Vz (zef{z} < 2z = x)

Fiir echte Mengen ist die Einerklasse mit der Allklasse identisch.

PI‘OpOSition 27. [theorem:properSingletonIsUniversalClass]

-M(z) — {2} =V
Einerklasse einer Menge zu sein ist dquivalent dazu Element seiner Einerklasse
zu sein.

PI‘OpOSitiOl’l 28. [theorem:setSingletonEqualHasItselfAsElement]

M(z) « ze{z}
Nun kann einfach durch Vereinigung zweier Einerklassen das Paar zweier Klas-
sen definiert werden.

Definition 12 (Paar). wetisition:pain
{z,y} = ({z}U{y})

Ein Klassenpaar kann auch direkt, d. h. ohne Zuhilfenahme der Einerklassen
beschrieben werden.

PI'OI) osition 29. teoren: classPairIsEquall

{z,y} = {z | (M=) A My)) - (z =2V 2z = y)}

Fiir Klassenpaare, die aus Mengen gebildet werden, kann die Eigenschaft, Ele-
ment des Klassenpaares zu sein, einfacher ausgedriickt werden.

PI‘Op OSit iOIl 30 o [theorem:membershipOfClassPair]

L Andere Autoren wie z. B. auch K. Godel, definieren {z} durch {y | y = =}.



22 KAPITEL 2. BOOLESCHE ALGEBRA DER KLASSEN

(M) A M(y) — V2 (z€fnyl o (2 =2V 2 = y)
Falls bei der Klassenpaarbildung eine echte Klasse dabei ist, dann ist das resul-

tierende Klassenpaar mit der Allklasse identisch.

PI‘OpOSitiOIl 31. [theorem:properClassPairIsUniversalClass]

(=M(z) v -M(y)) — {z,y} =V

Wir notieren, dass die Klassenpaarbildung kommutativ ist.

PI‘OpOSitiOI’l 32. [theoren: classPairBuildingIsCommutativel

{z,y} = {y, 2}

Die Einerklasse ist ein Spezialfall des Klassenpaares.

PI‘OpOSitiOIl 33. [theorem:singletonIsClassPair]

{z} = {z,z}

Menge zu sein ist dquivalent dazu, Element eines Klassenpaares zu sein.

Proposition 34. tmeoren:setzquimnciasspair]

M(z) < = e{zy}

Fiir Mengen ist die Elementbeziehung dquivalent zur Teilklassenbeziehung fiir
die zugehorige Einerklasse.

PI‘OpOSitiOIl 35. [theorem: elementEquiSingletonSubclass]

M) — (zey < {z} Cy)

Die Gleichheit von aus Mengen gebildeten Klassenpaaren ist wie erwartet.

PI'OpOSitiOI’l 36. [theorem:pairIdentities]
(Mz) A M(y) A
A

) A M(u) A M) — {z,y} = {
U Y \ )

= v) (x = v Ay = u)

2.5 Unendliche Boolsche Operatoren

Es konnen auch beliebige Schnittklassen und Vereinigungsklassen gebildet wer-
den. Dazu muss nur festgelegt werden, {iber welche Klassen jeweils geschnitten
bzw. vereinigt wird.

Fiir eine Klasse von Mengen wird ein Produkt so definiert, dass genau die Ele-
mente, die in allen Mengen enthalten sind, in dem Produkt liegen.

Definition 13 (Mengenprodukt). tsetprosuct

Nz =1{:I1Wer - z€y)}
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Diese Funktion kann als Verallgemeinerung der Schnittklassenbildung angesehen
werden. Siehe auch Proposition 46.

Wir sagen auch, dass die Klasse = eine Mengenfamilie festlegt. Jedes Element
von z ist ein Mitglied der Familie.

Wie iiblich kénnen wir die Elementbeziehung zum Mengenprodukt wie folgt
beschreiben.

PI‘Op OSit iOIl 3 7. [theorem: setProductMembership]

ze€Nz < Mz ANVy(yex — z€y))

Fiir den Speziallfall z = @ erhalten wir.

Proposition 38. twmeoren:enptysetproauct]

No =
Falls wir das Mengenprodukt einer nichtleeren Klasse bilden, kénnen wir die
Mengenbedingung weglassen.

PI‘OpOSition 39. [theorem:nonEmptySetProductMembership]

£ 0= ez o Vylyer — zey))
Analog kénnen wir die Mengensumme definieren. Genau die Elemente, die in
irgend einer der Mengen vorkommen, sollen in der Summe liegen.

Definition 14 (Mengensumme). esinisionssotsunl
Uz ={1wwer rzey)}

Die Zugehorigkeit zur Mengensumme kann wie folgt ausgedriickt werden.

PI‘Op OSit ion 40. [theorem: setSumMembership]

ez < Jy(yex AN z€y)

Hier kénnen wir die Mengenbedingung 9t(z) weglassen.

Fiir die leere Klasse erhalten wir.

Proposition 41. tneoren:enptysetsun

Uuo ==
Die Teilklassenrelation verhélt sich zu Mengenprodukt und Mengensumme wie
folgt.

PI‘Op OSit iOIl 42, [theorem: subsetSumProductImplication]

Nz (a)
Uy (b)

NN
NN

v Cy =y
x y — Uz

Die Elementbeziehung induziert Teilklassenbeziehungen in der folgenden Weise.

PI‘Op osition 43. [theorem:membershipToSetProductAndSum]
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zey -z S Uy (a)
rey - Ny Cu (b)

Die Vereinigungs- und Schnittklassenbildung passt zu Mengensumme und Men-
genprodukt wie nachfolgend beschrieben.

PI'OpOSitiOIl 44. (theoren:unionIntersectionSetSunProduct]

N@@uy) = (N zNMN y)
U@uy) = (U zul y)
U@ny) € UznUy)

o

—~
o &

Fiir den Fall einer nichtleeren Mengenfamilie haben wir dieses Ergebnis.

PI‘OpOSitiOI‘l 45. [theorem: nonEmptySumProductSubSet]

Ve (r 20 = NacUa)

Fiir Mengenpaare erhalten wir die erwarteten Ergebnisse.

PI'OpOSitiOl’l 46. (ineoren:setpairsetsumProduct]

(M(z) A My)) — ) {z,y} = (zNy) (a)
M(z) A My)) — UA{zy} = (zUy) (b)

Fiir Einermengen erhalten wir analoge Aussagen.

Proposition 47. twmeoren:singietonsetsumproduct]

M(z) — N {z} )
M) — Uz} = = (b)

I
8
>

2.6 Potenzklassenbildung

Ein wichtiger Operator fehlt uns noch.

Aus der Teilklassenrelation lisst sich ein weiterer Klassenoperator gewinnen, die
Potenzklassenbildung.

Definition 15 (Potenzklasse). tastinition:poner)
Plx) = {z]z C «}

Wir erinnern noch einmal daran, dass nur Mengen in der Potenzklasse enthalten
sein konnen.

Fiir diesen neuen Operator gelten die folgenden Aussagen.

PI‘OpOSitiOH 48- [theorem: powerPropositions]

z€P(x) & M(z) A 2z C x) (a)
BEY) =T (b)

0) = {0} (c)

M(z) < =€ P(z) (d)

r Cy — P@) S PB) (e)
(M(z) A P(x) € P) — = C y (f)
PB((zny) = (Pz) NP(y)) (g)
(P()UPBy) S PB(zUy)) (h)

z C PBU 2) (i)

U B@) C = i)
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Speziell fiir die Potenzklasse einer Menge lédsst sich Proposition 48 verschérfen.

Proposition 49. tumeoren:poversetpropositions]

M) — = = U Pl)

Fiir Mengen heben sich die Potenzklassenbildung und die Mengensumme (in
dieser Reihenfolge) gegenseitig auf. Spiter kénnen wir die Mengenbedingung
fallenlassen, da wir dann iiber weitere Axiome verfiigen.
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Kapitel 3

Mengen, Relationen und
Funktionen

In diesem Kapitel wird noch einmal genauer auf die Mengeneigenschaft einge-
gangen und es werden neue Axiome angegeben, um die Existenz von Mengen
abzusichern.

Um Relationen definieren zu kénnen, wird der Begriff des geordneten Klassen-
paares bendtigt, der es ermoglicht, das cartesische Produkt von Klassen zu de-
finieren. Relationen sind Teilklassen von cartesischen Produkten und bilden zu-
sammen mit bestimmten Operationen eine universelle Algebra.

Spezielle Relationen sind die Aquivalenzrelationen, die einen etwas weiter ge-
fassten Gleichheitsbegriff ermdglichen. Funktionen sind ebenfalls spezielle Rela-
tionen, Das Fraenkelsche Ersetzungsaxiom garantiert, dass Mengen auf Mengen
abgebildet werden.

3.1 Mengen

Zur Darstellung der Booleschen Klassenalgebra wurden noch keine mengentheo-
retischen Axiome benétigt Im Folgenden werden weitere Axiome vorgestellt, die
Bedingungen dafiir angeben, wann eine Klasse eine Menge ist.

Die leere Klasse soll eine Menge sein.

Axiom 4 (Axiom der leeren Menge). raxion:emptyset)

m(0)

Damit haben wir zum ersten Mal Kenntnis iiber die Existenz einer Menge.

Um die Mengeneigenschaft fiir Paare von Mengen zu erhalten, haben wir das
folgende Axiom.

Axiom 5 (Axiom der Paarmenge). tasion:pairingsetl

(M(x) A My)) — M{z,y})

Auch die Mengensumme einer Menge soll wieder eine Menge sein.

Axiom 6 (Summenmengenaxiom). texion:sessunset]

M(z) — MU =)

27
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Die Potenzklasse einer Menge soll auch wieder eine Menge sein.

Axiom 7 (Axiom der Potenzmenge). tasion:poverset

M(x) — M(P(x))

Die Teilklasse einer Menge soll wieder eine Menge sein.

Axiom 8 (Teilmengenaxiom). tasion:suwset)

M(z) Ay S x) — My)

Die obigen Mengenaxiome ermdglichen es uns Mengen zu konstruieren. Durch
das Axiom 4 haben wir eine erste Menge (). Durch die Anwendung von Axiom 7
erhalten wir die Menge {(}. Die erneute Bildung der Potenzmenge erzeugt die
Menge {@,{0}}. Durch wiederholtes Anwendung der Prozedur bekommen wir
eine beliebige Anzahl von Mengen.'

Weiterhin stellen wir fest, dass wir mit unseren bisherigen Axiomen nur die
Existenz von Mengen mit einer endlichen Elementanzahl nachweisen kénnen.
Diese endlichen Mengen sind ,,sicher in dem Sinne, dass sie nicht zu den Wi-
derspriichen fithren, wie sie in der uneingeschréinkten Mengenlehre Zermelos
auftreten,

Mit Hilfe der neuen Axiome kénnen weitere Folgerungen gezogen werden.

Proposition 50. tmeoren:issets

(M) Ay € x) — —M(x) (a)
—M(V) (b)

(M(z) A My)) — M((zVy)) ()
(M(z) A My)) — M((zNy)) (d)
M(z) — M({z}) ()

M(z) — —M(T) (f)

z = U B) ()

M(z) < MU =) (h)

Ny =10 (i)

Us =2 )

z # 0 — MN ) (k)

Wir stellen abschliefend fest, dass wir Axiom 4 (Axiom der leeren Menge) in den
Beweisen bisher noch nicht verwendet haben. Da bedeutet, dass alle bisherigen
Sétze unabhéngig von der Existenz einer einzigen Menge giiltig sind.

3.2 Geordnetes Klassenpaar

Das Konzept eines geordneten Paares ist fiir die weitere Entwicklung unserer
Theorie wichtig. Es ermoglicht uns die Objekte anzuordnen. Bisher hingen unse-
re Objektzusammenfassungen nicht von der Reihenfolge der Sammlung ab. Wir
wollen nun aber auch nach der Zusammenfassung herausfinden kénnen, welches
das erste Element und welches das zweite Element war.

Die Definition eines geordneten Paares (x,y) erfolgt nach N. Wiener (1914)
bzw. K. Kuratowski (1921).

1Dass die Mengen alle paarweise voneinander verschieden sind, ist leicht zu zeigen.
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Definition 16 (Geordnetes Paar). esinisionsoraoredapair)
{,y) = o} {zy})

Fiir geordnete Paare von Mengen spielt die Reihe der angegebenen Elemente
eine Rolle. Geordnete Paare sollten nur dann identisch sein, wenn ihre ersten
Elemente und ihre zweiten Elemente identisch sind.

PI‘Op osition 51. [theorem:orderedPairEquality]

M(z) A My) A M(u) A M) — (z,9) = (W) = (& = uAy = v))

Ein aus Mengen gebildetes geordnetes Paar ist auch eine Menge. Die Umkehrung
gilt auch.

PI‘Op osition 52. [theorem:orderedPair0fSets]

M(z) A My)) < M((z,y))

Falls eine der Klassen keine Menge ist, dann ist das geordnete Paar mit der
Allklasse identisch.

P ropos ition 53. [theorem:orderedPairWithNonSet]

(=M(z) V -M(y)) — (z,y) = T

Um {iber geordnete Paare sprechen zu konnen, benétigen wir ein neues Préadikat
»ist ein geordnetes Paar “.

Definition 17 (Eigenschaft geordnetes Paar). tetinition:isordereapail

isOrderedPair(z) < Ju Fvz = (u,v)

Wir betonen noch einmal, dass auch U ein geordnetes Paar ist. Aber da wir
meistens iiber Elemente von Klassen sprechen, haben wir nur mit Mengen zu
tun, die eventuell auch geordnete Paare sind.

3.3 Kartesisches Produkt

Fiir die geordneten Klassenpaare brauchen wir eine Metastruktur. Dafiir fassen
wir einfach geordnete Paare in einer Klasse zusammen.

Das Kartesische Produkt?, auch Kreuzprodukt genannt, ist die Klasse aller ge-
ordneter Paare, deren Elemente aus den Ausgangsklassen stammen.

Definition 18 (Kartesisches Produkt). etinicion:carsesianproduct]

(xxy) ={z]FuTFv(uex Nvey A z = (u,v))}

2Kartesisch oder kartesianisch nach der lateinischen Namensform Cartesius des Philoso-
phen und Mathematikers R. Descartes.
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3.4 Relationen

Es ist wichtig, Relationen zwischen mathematischen Objekten ausdriicken zu
koénnen und sie auch als Objekte behandeln zu kénnen. Es stellt sich heraus, dass
wir keine neuen Objektarten benotigen. Unsere bisherigen Strukturen reichen
aus.

Nun kénnen wir den Begriff der Relation auch innerhalb unserer Mengenlehre
definieren.

Definition 19 (Relation). tesinision:reration)

Rel(z) — Yy (y €z — isOrderedPair(y))

Ein paar Aussagen iiber Relationen.

Proposition 54. tmeoren:retationproperties]

Rel(0) (a)

Rel((V x V)) (b)

(Rel(z) A Rel(y)) — Rel((zNy)) (c)
(Rel(z) A Rel(y)) — Rel((zUy)) (d)

Wie geben nun eine allgemeine Definition des Begriffs Definitionsbereich an.

Definition 20 (Definitionsbereich). werinition:donain

Dom(z) = {y |3z (y,2) € z}

Analog zu dem Definitionsbereich legen wir den Wertebereich einer Klasse fest.

Definition 21 (Wertebereich). totinition:rangel

Rng(z) = {y | 32 (2,9) € x}

3.5 Relationenalgebra

MISSING! OTHER: +++

3.6 Aquivalenzrelationen

MISSING! OTHER: +-++

3.7 Abbildungen und Funktionen

MISSING! OTHER: +-++

Eine Funktion ist einfach eine spezielle Art von Relation.

Definition 22 (Funktion). [definition:function]

Junct(z) «— (Rel(x) A Yy (y € Dom(z) — Tz (y,z) € z))

Falls der Definitionsbereich einer Funktion eine Menge ist, dann sollte auch ihr
Wertebereich eine Menge sein.



3.7. ABBILDUNGEN UND FUNKTIONEN

Axiom 9 (Fraenkelsches Ersetzungsaxiom). (aion:Fraenkershepiacenent]

(Sunct(f) A M(Dom(f))) — M(RAng(f))

31
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Kapitel 4

Natiirliche Zahlen

MISSING! OTHER: +++

4.1 Fundierung und Unendlichkeit

MISSING! OTHER: +++

Mengen z sollten sich nicht selbst als Element enthalten oder ein Element besit-
zen, das wiederum z als Element hat. Um diese und andere Enthaltenseinszirkel
auszuschlieflen, stellen wir das folgende Axiom vor.

Axiom 10 (Fundierungsaxiom). tasion:foundationl
£ 0 — Jylyex A (ynx) = 0)

Dieses Axiom heifit auch Regularitdtsaxiom.

Eine naheliegende Klassenerweiterung ist die Bildung der Vereinigungsmenge
mit der Einerklasse.

Definition 23 (Nachfolger). wetinition:successor]

v = (zuf})

Weil z ¢ x fiigt die Nachfolgerfunktion der orginalen Klasse genau ein Element
hinzu.

Wir wollen eine Menge mit unendlich vielen Elementen haben. So fordern wir
einfach ihre Existenz.

Axiom 11 (Unendlichkeitsaxiom). taionintinity)

Jr M(z) ADex AVy(yezr — ¢y €x))

4.2 Definition und Grundeigenschaften

MISSING! OTHER: +++

4.3 Induktion

MISSING! OTHER: +++
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4.4 Folgen und normale Funktionen

MISSING! OTHER: +++

4.5 Rekursion

MISSING! OTHER: +++



Kapitel 5
Auswahlaxiom

+++

5.1 Wohlordnungen

+++

Nun kommen wir zu dem bekannten Auswahlaxiom. Wir formulieren es fiir
Relationen.

Axiom 12 (Auswahlaxiom). texion:coicel

Rel(z) — Ty Funct(y) — (y € =z A Dom(z) = Dom(y)))

5.2 Anwendungen des Auswahlaxioms

MISSING!
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Kapitel 6

Kontinuum
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