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Vorwort

Mathematik ist eine Wissenschaft mit einer Struktur, die im Laufe der Zeit
riesige Dimensionen erreicht hat. Diese unglaublich hohe Burg besitzt nur
ein ganz schmales Fundament und ihre Festigkeit gründet sich auf einfachem
prädikatenlogischen Mörtel. Im Prinzip kann der Aufbau von jeder Mathemati-
kerin verstanden werden. Von dem neuesten Gipfel mathematischer Erkenntnis
kann jeder Pfad logisch folgerichtig bis in die mengentheoretischen Wurzeln
nachvollzogen werden.

Bei diesem Unternehmen will dieses Dokument Hilfestellung geben. Ziel ist ei-
ne Präsentation der mengentheoretischen Wurzeln in verständlicher Weise. Bei
aller Verständlichkeit soll es jedoch jederzeit möglich sein, tief in die Details
einzusteigen, ja sogar bis auf die Ebene eines formal korrekten Beweises hinab.
Dazu soll es dieses Dokument in verschiedenen Detaillierungen geben. Für al-
le aber gilt, dass die Formeln in Axiomen, Definitionen und Propositionen in
formal korrekter Form vorliegen.

Wir wollen bei den Wurzeln anfangen. . .

Dieses Dokument ist im Entstehen begriffen und wird von Zeit zu Zeit aktuali-
siert. Insbesondere werden an den durch ”+++“ gekennzeichneten Stellen noch
Ergänzungen oder Änderungen vorgenommen.

Besonderer Dank geht an meine Frau Gesine Dräger und unseren Sohn Lennart
für ihre Unterstützung und ihr Verständnis für ihnen fehlende Zeit.

Hamburg, Dezember 2010
Michael Meyling
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Einleitung

In diesem Dokument nutzen wir die Ergebnisse aus http://www.qedeq.org/
0_04_03/doc/math/qedeq_logic_v1_de.pdf [1]. Nachdem durch die Logik die
Art der mathematischen Argumentation vorgegeben wird, wird in der Mengen-
lehre ganz allgemein über Objekte und ihre Zusammenfassungen gesprochen.
Besonders interessant ist die Mengenlehre dadurch, dass sie zum einen von ei-
gentlich allen mathematischen Disziplinen verwendet wird. Zum anderen lässt
sich jede mathematische Disziplin innerhalb der Mengenlehre definieren. Zahlen-
theorie, Algebra, Analysis und alle weiteren Gebiete lassen sich darauf aufbauen.

Dieses Dokument beschreibt die mathematischen Grundlagen der Mengenleh-
re. Ziel ist dabei die Bereitstellung von elementaren Ergebnissen der Mengen-
lehre, die in anderen mathematischen Disziplinen benötigt werden. Nach den
Grundlagen wird die Boolsche Algebra der Klassen betrachtet. Es schliessen
sich Betrachtungen über Relationen und Funktionen an. Ein weiteres wichti-
ges Ergebnis sind die Definition der natürlichen Zahlen und die Erfüllung der
Peano-Axiome durch diese, auch auf den Begriff der Rekursion wird eingegan-
gen. Anschließend wird das Auswahlaxiom behandelt. Am Schluss geht es um
das Kontinuum.

Die Darstellung erfolgt in axiomatischer Weise, soll aber im Ergebnis der mathe-
matischen Praxis entsprechen. Daher wird auch das Axiomensystem der Men-
genlehre von A. P. Morse und J. L. Kelley (MK) verwendet. Der Aufbau lehnt
sich stark an das exzellente und sehr empfehlenswerte Buch von E. J. Lem-
mon [2] an.
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Kapitel 1

Anfangsgründe

In diesem Kapitel beginnen wir mit den ganz elementaren Axiomen und De-
finitionen der Mengenlehre. Wir versuchen nicht, eine formale Sprache ein-
zuführen,1 und setzen das Wissen um den Gebrauch von logischen Symbolen
voraus. Noch genauer formuliert: wir arbeiten mit einer Prädikatenlogik erster
Stufe mit Identität.

G. Cantor, der als Begründer der Mengenlehre gilt, hat in einer Veröffentlichung
im Jahre 1895 eine Beschreibung des Begriffs Menge gegeben.

Unter einer ”Menge“ verstehen wir jede Zusammenfassung M von
bestimmten wohlunterscheidbaren Objekten m unserer Anschauung
oder unseres Denkens (welche die ”Elemente“ von M genannt wer-
den) zu einem Ganzen.

Diese Zusammenfassung kann über die Angabe einer Eigenschaft dieser Elemen-
te erfolgen. Um 1900 wurden verschiedene Widersprüche dieser naiven Mengen-
lehre entdeckt. Diese Widersprüche lassen sich auf trickreich gewählte Eigen-
schaften zurückführen.

Es gibt verschiedene Möglichkeiten diese Widersprüche zu verhindern. In diesem
Text schränken wir zwar die Angabe von Eigenschaften in keiner Weise ein,
aber wir nennen das Ergebnis der Zusammenfassung zunächst einmal Klasse.
Zusätzliche Axiome regeln dann, wann eine bestimmte Klasse auch eine Menge
ist. Alle Mengen sind Klassen, aber nicht alle Klassen sind Mengen. Eine Menge
ist eine Klasse, die selbst Element einer anderen Klasse ist. Eine Klasse, die
keine Menge ist, ist nicht Element irgend einer anderen Klasse.

1.1 Klassen und Mengen

Obgleich wir im Wesentlichen über Mengen sprechen wollen, haben wir am
Anfang nur Klassen. Dieser Begriff wird nicht formal definiert. Anschaulich ge-
sprochen, ist eine Klasse eine Zusammenfassung von Objekten. Die beteiligten
Objekte heißen auch Elemente der Klasse. Mengen werden dann als eine beson-
dere Art von Klassen charakterisiert.

1Dessen ungeachtet sind die Formeln der Axiome, Definitionen und Propositionen in dem
Ursprungstext dieses Dokuments in einer formalen Sprache notiert. Der Ursprungstext ist eine
XML-Datei, deren Syntax mittels der XSD http://www.qedeq.org/current/xml/qedeq.xsd

definiert wird. Eine nähere Beschreibung der Formelsprache ist unter http://www.qedeq.org/
current/doc/project/qedeq_logic_language_de.pdf zu finden.

9
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Die folgenden Definitionen und Axiome folgen dem Aufbau einer vereinfachten
Version der Mengenlehre nach von Neumann-Bernays-Gödel (NBG). Die genaue
Bezeichnung lautet MK nach Morse-Kelley.

Die hier vorgestellte Mengenlehre hat als Ausgangsobjekte Klassen. Weiterhin
wird nur ein einziges Symbol für eine binäre Relation vorausgesetzt: der Ent-
haltenseinoperator.

Initiale Definition 1 (Elementbeziehung). [definition:in]

x ∈ y

Wir sagen auch ”x ist Element von y“, ”x gehört zu y“, ”x liegt in y“oder
auch ”x ist in y“. Neben der Identität ist dies das einzige Prädikat welches
wir zu Beginn haben. Alle anderen werden definiert. Auch Funktionskonstanten
haben wir zu Anfang nicht, ihre Bedeutung wird sukzessive im weiteren Verlauf
festgelegt.

Obgleich wir die Elementbeziehung einfach negieren können, möchten wir dafür
eine Abkürzung definieren.

Definition 2 (Negation der Elementbeziehung). [definition:notIn]

x /∈ y ↔ ¬x ∈ y

Unser erstes Axiom besagt, dass beliebige Klassen x und y identisch sind, wenn
sie dieselben Elemente enthalten.

Axiom 1 (Extensionalität). [axiom:extensionality]

∀z (z ∈ x ↔ z ∈ y) → x = y

Die Klassen x und y können verschieden definiert sein, beispielsweise:

x = Klasse aller nichtnegativen ganzen Zahlen,
y = Klasse aller ganzen Zahlen, die als Summe von vier Quadraten ge-

schrieben werden können,

aber wenn sie dieselben Elemente besitzen, sind sie identisch.

Nun zu unserer ersten Proposition. In dem Extensionalitätsaxiom können wir
die Implikation umkehren.

Proposition 1. [theorem:extensonalityEquivalence]

∀z (z ∈ x ↔ z ∈ y) ↔ x = y

Beweis. Dies ist eine einfache Anwendung des zweiten identitätslogischen
Axioms. Wir setzen x = y voraus. Nun folgt φ(x) ↔ φ(y) für jedes Prädikat
φ. So bekommen wir z ∈ x ↔ z ∈ y für beliebiges z. Also haben wir
∀ z z ∈ x ↔ z ∈ y. Damit zeigten wir x = y → ∀ z z ∈ x ↔ z ∈ y.
Zusammen mit dem Axiom 1 erhalten wir das gewünschte Ergebnis.

Falls wir das Identitätsprädikat nicht als logisches Symbol voraussetzen würden,
dann würden wir es hiermit definieren. Aber dann wird auch ein weiteres Axiom
benötigt und es ergeben sich technischen Schwierigkeiten bei der Herleitung der
Identitätsaxiome.2

Jetzt legen wir fest, was eine Menge ist.
2 Zusätzlich zur Definition der Identität muss das Axiom der Extensionalität in folgender

Formulierung treten: (x = y ∧ x ∈ z) → y ∈ z. Das ist ein Spezialfall der Leibnizschen
Ersetzbarkeit, die wir bereits als Axiom 8 [1] kennen. Die Gültigkeit im allgemeinen Fall kann
durch Rekursion über den Aufbau der Formeln nachgewiesen werden. Siehe auch [4] §6.

Alternativ können wir definieren (x = y ↔ (∀z (x ∈ z → y ∈ z)) ∧ ∀z (x ∈ z → z ∈ y)).

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.axiom:leibnizReplacement
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Definition 3 (Menge). [definition:isSet]

M(x) ↔ ∃y x ∈ y

Mengen sind also nichts anderes als Klassen mit einer besonderen Eigenschaft.
Eine Klasse ist genau dann eine Menge, wenn sie Element irgendeiner Klasse
ist.

Eine triviale Folgerung aus dieser Definition ist die folgende Äquivalenz.

Proposition 2. [theorem:inSetEqualInSetAndIsSet]

x ∈ y ↔ (M(x) ∧ x ∈ y)

Beweis. ‘⇒’: Sei x ∈ y. Es folgt ∃ u x ∈ u und daher M(x) und logisch M(x)∧
x ∈ y.

‘⇐’: Aus M(x) ∧ x ∈ y schließen wir x ∈ y.

Nun können wir das Extensionalitätsaxiom wie folgt schreiben.3

Proposition 3. [theorem:extensionalitySetRestricted]

x = y ↔ ∀ M(z) (z ∈ x ↔ z ∈ y)

Beweis. ‘⇒’: Genauso wie im Beweis zu Proposition 1 erhalten wir die erste
Implikation mit dem zweiten identitätslogischen Axiom.

‘⇐’: Angenommen es gelte ∀ M(z) (z ∈ x ↔ z ∈ y). Sei u eine beliebige
Klasse. Falls u ∈ x dann gilt u ist eine Menge nach Definition 3, und daraus
folgt mit der Annahme u ∈ y. Analog folgt u ∈ y → u ∈ x. Da u beliebig,
haben wir ∀u (u ∈ x ↔ u ∈ y). Und mit dem Axiom 1 erhalten wir daraus
x = y.

Beweis.

x = y ↔ ∀ z (z ∈ x ↔ z ∈ y) dies ist Proposition 1
↔ ∀ z (M(z) ∧ z ∈ x ↔ M(z) ∧ z ∈ y) Proposition 2
↔ ∀ z (M(z)→ (z ∈ x ↔ z ∈ y)) Proposition 1 (bh) [1]
↔ ∀ M(z) z ∈ x ↔ z ∈ y) Axiom 11 [1]

Unser nächstes Axiom der Mengenlehre ermöglicht uns in simpler Art und Weise
neue Klassen zu bilden. Eine Klasse wird ganz einfach durch die Angabe einer
prädikatenlogischen Formel charakterisiert.

Axiom 2 (Komprehension). [axiom:comprehension]

∃x ∀y (y ∈ x ↔ (M(y) ∧ φ(y)))

Durch eine kleine Änderung dieses Axioms würden wir im Folgenden ein NBG-
Axiomensystem der Mengenlehre erhalten, welches auf John von Neumann,
Isaak Bernays und Kurt Gödel zurückgeht. Dazu definieren wir: eine Formel,
in der alle gebundenen Subjektvariablen auf Mengen restringiert sind, wird
prädikative Formel genannt. Prädikative Formeln formalisieren also diejenigen

3Es wird ein eingeschränkter Allquantor benutzt, z läuft nur über Mengen.

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/bh
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.axiom:restrictedUniversalQuantifier
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Eigenschaften, die man als ”Eigenschaften von Mengen“ bezeichnen kann.4 For-
dern wir nun also zusätzlich, dass φ prädikativ sein muss, dann erhalten wir ein
NBG-System5.

Durch das Komprehensionsaxiom und die Extensionalität wird nun der Zu-
sammenhang zwischen einer Aussage φ(y) und der durch sie definierten Klasse
festgelegt. Dabei behauptet das Komprehensionsaxiom die Existenz mindestens
einer Klasse, deren Elemente die Aussage M(y)∧φ(y) erfüllen. Das Extensiona-
litätsaxiom und die Identitätsaxiome sichern ab, dass es höchstens eine solche
Klasse gibt: irgend zwei Klassen, welche dieselben Elemente besitzen, sind gleich
im Sinne der Ersetzbarkeit in allen einschlägigen Aussagen. Mit anderen Wor-
ten: es gibt nur genau eine solche Klasse.

Proposition 4. [theorem:comprehension]

∃!x ∀y (y ∈ x ↔ (M(y) ∧ φ(y)))

Beweis. Zu zeigen ist:

∃x ∀y (y ∈ x↔ M(y) ∧ φ(y))
∧ ∀u ∀v (∀y (y ∈ u↔M(y) ∧ φ(y)) ∧ ∀y (y ∈ v ↔ M(y) ∧ φ(y)))

→ u = v)

Seien u und v beliebig. Es gelte weiterhin:

∀y (y ∈ u↔ M(y) ∧ φ(y)) ∧ ∀y (y ∈ v ↔M(y) ∧ φ(y)))

Dann folgt mit Proposition 2 (h) [1]: ∀y ((y ∈ u ↔ M(y) ∧ φ(y)) ∧ (y ∈ v ↔
M(y) ∧ φ(y)))

Daraus erhalten wir mit Proposition 1 (bg) [1]: ∀y ((y ∈ u↔ y ∈ v)). Und mit
Proposition 1 folgt nun u = v. Also haben wir gezeigt:

∀u ∀v (∀y (y ∈ u↔M(y) ∧ φ(y)) ∧ ∀y (y ∈ v ↔M(y) ∧ φ(y)))→ u = v)

Zusammen mit dem Axiom 2 folgt nun die Behauptung.

Ausgehend von Proposition 4 können wir die Sprachsyntax erweitern und eine
neue abkürzende Schreibweise einführen.

Regel 1 (Klassenschreibweise). [rule:classDefinition] Für jede Formel α(x1) definieren
wir den Termausdruck {x1 | α(x1)}, wobei x1 eine Subjektvariable ist, die in
α(x1) nicht gebunden ist. Die freien Variablen von {x1 | α(x1)} sind die freien
Variablen von α(x1). Die gebundenen Variablen entsprechen den gebundenen
Variablen von α(x1) ergänzt um x1.

Alle Ableitungsregeln werden entsprechend erweitert.

Basierend auf: 4

Insbesondere müssen die Substitutionsregeln überprüft werden, weil ein Term
nun auch gebundene Subjektvariablen enthalten kann.6 Im Folgenden wird auf
diese neue Schreibweise zurückgegriffen.

Wir wollen der neu eingeführten Syntax eine Bedeutung geben, und nach einem
Blick auf Proposition 4 führen wir das folgende Axiom ein.

Axiom 3 (Axiom der Klassenschreibweise). [axiom:classDefinition]

4Noch etwas formaler: in einer prädikativen Formel laufen alle Quantorenvariablen nur
über Mengen: ∀ M(x) ∃ M(y) . . .

5Dazu werden noch einige andere Axiome — analog zu den folgenden — benötigt
6Glücklicherweise haben wir das jedoch schon bei der Formulierung unserer Substitutions-

regeln berücksichtigt, so dass wir nichts tun müssen.

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:predicateCalculus/h
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/bg
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y ∈ {x | φ(x)} ↔ (M(y) ∧ φ(y))

Dies Axiom zusammen mit Regel 1 führt nur zu einer konservativen Erweiterung
unserer formalen Sprache. Das bedeutet, dass mit der Erweiterung nicht mehr
Formeln, die der alten Syntax genügen, abgeleitet werden können. Es ist nur
bequem, eine neue elegante Schreibweise zu besitzen.7.

Die neue Schreibweise kann auch in einfacher Weise in die alte Syntax transfor-
miert werden. Die Gültigkeit der Ausgangsprädikate drückt sich für diese neue
Termart wie folgt aus.

Proposition 5. [theorem:setNotation]

y ∈ {x | φ(x)} ↔ (M(y) ∧ φ(y)) (a)
y = {x | φ(x)} ↔ ∀z (z ∈ y ↔ z ∈ {x | φ(x)}) (b)

{x | φ(x)} = {x | ψ(x)} ↔ ∀z (z ∈ {x | φ(x)} ↔ z ∈ {x | ψ(x)}) (c)
{x | φ(x)} ∈ {x | ψ(x)} ↔ ∀u ∀v ((u = {x | φ(x)} ∧ v =

{x | ψ(x)}) → u ∈ v)
(d)

{x | φ(x)} ∈ y ↔ ∀u (u = {x | φ(x)} → u ∈ y) (e)

+++ wenn diese Formel richtig gesetzt würde, sollte sie so aussehen:

y ∈ {x | φ(x)} ↔M(y) ∧ φ(y) (a)
y = {x | φ(x)} ↔ ∀z (z ∈ y ↔ z ∈ {x | φ(x)}) (b)

{x | φ(x)} = {x | ψ(x)} ↔ ∀z (z ∈ {x | φ(x)} (c)

↔ z ∈ {x | ψ(x)})
{x | φ(x)} ∈ {x | ψ(x)} ↔ ∀u ∀v ((u = {x | φ(x)}

∧ v = {x | ψ(x)})→ u ∈ v)
(d)

{x | φ(x)} ∈ y ↔ ∀u (u = {x | φ(x)} → u ∈ y) (e)

Beweis. Die Formel in a) ist einfach Axiom 3. Mit Proposition 1 erhalten wir
b) und c). Mit Identitätsgesetzen bekommen wir d) und e).

Durch sukzessives Anwenden des obigen Satzes kann also die neue Syntax in die
alte überführt werden.

Da durch die neue Schreibweise ein Term eindeutig festgelegt wird, muss
natürlich auch das Folgende gelten.

Proposition 6. [theorem:setDefinitionUnique]

∃!x x = {y | φ(y)}

Beweis.
∃! x ∀ z (z ∈ x ↔ M(z) ∧ φ(z)) dies ist Proposition 4
∃! x ∀ z (z ∈ x ↔ z ∈ {y | φ(y)} Proposition 5
∃! x x = {y | φ(y)} Proposition 1

Aus der Äquivalenz von Aussageformen kann auf die Gleichheit der daraus ge-
bildeten Klassen geschlossen werden.

7 Unter einer konservativen Erweiterung verstehen wir das Folgende: Sei L eine Sprache
und L′ eine Erweiterung von L. Da L′ ⊃ L gilt auch FormelL′ ⊃ FormelL. Falls nun für jede
Formelmenge Γ ⊆ FormelL und jede Formel α ∈ FormelL gilt: Γ `L′ α ⇒ Γ `L α, dann
heißt L′ eine konservative Erweiterung von L.
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Proposition 7. [theorem:propositionEqualImplClassEqual]

∀x (φ(x) ↔ ψ(x)) → {x | φ(x)} = {x | ψ(x)}

Beweis.
(φ(x)↔ ψ(x)) → (φ(x) ∧M(x)↔ ψ(x) ∧M(x)) Proposition 1 (bl) [1]

∀x ((φ(x)↔ ψ(x)) → (φ(x) ∧M(x)↔ ψ(x) ∧M(x))) Regel 11 [1]

∀x (φ(x)↔ ψ(x)) → ∀x (φ(x) ∧M(x)↔ ψ(x) ∧M(x)) Proposition 2 (a) [1]

→ ∀x(x ∈ {y|φ(y)} ↔ x ∈ {y|ψ(y)}) Proposition 5

→ {y | φ(y)} = {y | ψ(y)} Proposition 5

Die Umkehrung gilt jedoch nicht. Das liegt daran, dass mit der Klassenschreib-
weise nur Mengen zusammengefasst werden. Beispiel: wenn φ(x) ↔ x 6= x und
ψ(x)↔ ∀y (y ∈ x→ y /∈ y), dann sind die durch beide Aussageformen erzeug-
ten Klassen identisch mit der leeren Klasse (Definition 6). Keine Klasse erfüllt
φ(x), allerdings erfüllt die Russellsche Klasse (Definition 4) die Bedingung ψ(x).

Jede Klasse lässt sich durch eine Aussage beschreiben, indem auf ihre Elemente
Bezug genommen wird.

Proposition 8. [theorem:classDescriptionPossible]

x = {y | y ∈ x}

Beweis.
z ∈ x ↔ z ∈ x ∧M(z) Proposition 2
z ∈ x ↔ z ∈ {y | y} Proposition 5

∀z (z ∈ x ↔ z ∈ {y | y}) Regel 11 [1]
x = {y | y} Proposition 1

1.2 Spezielle Klassen

In diesem Abschnitt definieren wir die ersten Klassen.

Die Russellsche Klasse kann nun einfach definiert werden.

Definition 4 (Russell-Klasse). [definition:RussellClass]

Ru = {x | x /∈ x}

Die Russellsche Klasse ist eine echte Klasse, d. h. sie ist keine Menge.

Proposition 9. [theorem:RussellClassIsClass]

¬M(Ru)

Beweis.
y ∈ {x | φ(x)} ↔ M(y) ∧ φ(y) das ist Proposition 5
y ∈ {x | x /∈ x} ↔ M(y) ∧ y /∈ y Substitution für φ

y ∈ Ru ↔ M(y) ∧ y /∈ y Definition 4
Ru ∈ Ru ↔ M(Ru) ∧Ru /∈ Ru Substitution für y

M(Ru) ∧Ru ∈ Ru ↔ M(Ru) ∧Ru /∈ Ru Proposition 2
¬M(Ru) Proposition 1 (bi) [1]

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/bl
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:derivedQuantification
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:predicateCalculus/a
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:derivedQuantification
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/bi
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Die Allklasse soll alles mögliche umfassen.

Definition 5 (Allklasse). [definition:universalClass]

V = {x | x = x}

Da in einer Klasse nur Mengen als Elemente vorkommen, verwundert es nicht,
dass folgendes gilt.

Proposition 10. [theorem:isInUniversalClass]

x ∈ V ↔ M(x)

Beweis.
x ∈ {y | φ(y)} ↔ M(x) ∧ φ(x) dies ist Proposition 5
x ∈ {y | y = y} ↔ M(x) ∧ y = y Substitution für φ

x ∈ V ↔ M(x) ∧ y = y Definition 5
x ∈ V ↔ M(x) Proposition 1 (au) [1] und Axiom 7 [1]

Mitgliedschaft in der Allklasse ist daher gleichbedeutend mit der Eigenschaft,
eine Menge zu sein.

Die Allklasse umfasst alle Mengen.

Proposition 11. [theorem:universalClassContainsAllSets]

V = {x | M(x)}

Beweis.
V = {x | x = x} Definition 5

∀y (y ∈ V ↔ y ∈ {x | x = x} Proposition 1
∀y (y ∈ V ↔ M(y) ∧ y = y Proposition 5
∀y (y ∈ V ↔ M(y) ∧ > Regel 10 [1]
∀y (y ∈ V ↔ M(y) Proposition 1 (au) [1]
∀y (y ∈ V ↔ M(y) ∧M(y) Proposition 1 (al) [1]
∀y (y ∈ V ↔ y ∈ {x | M(x)} Proposition 5

V = {x | M(x)} Proposition 1

Entsprechend definieren wir die leere Klasse. Später werden wir feststellen, dass
die leere Klasse eine Menge ist. Dazu benötigen wir jedoch weitere Mengenaxio-
me. Wir bezeichnen diese Klasse jedoch schon jetzt mit den Worten leere Menge.

Definition 6 (Leere Klasse). [definition:emptySet]

∅ = {x | x 6= x}

Keine Klasse ist Element der leeren Klasse.

Proposition 12. [theorem:noClassIsMemberOfEmptySet]

∀z z /∈ ∅

Beweis. Annahme: z ∈ ∅
z ∈ {x | x 6= x} Definition 6
M(z) ∧ z 6= z Axiom 3

z 6= z elementary logic
¬ (z = z) Definition 4 [1]

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/au
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.axiom:identityIsReflexive
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:replaceTrueFormulaByTrue
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/au
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/al
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.definition:notEqual


16 KAPITEL 1. ANFANGSGRÜNDE

Damit haben wir einen Widerspruch zu Axiom 7 [1] und unsere Annahme muss
falsch sein. Also gilt ¬(z ∈ ∅) und wir können weiter folgern.

¬ (z ∈ ∅)
z /∈ ∅ Definition 2
∀z z /∈ ∅ Regel 11 [1]

Eine Klasse, welche keine Elemente besitzt, ist die leere Klasse.

Proposition 13. [theorem:noClassIsMemberIsEmptySet]

∀z z /∈ x ↔ x = ∅

Beweis.
x = ∅ ↔ ∀z (z ∈ x↔ z ∈ ∅) Proposition 1

↔ ∀z (z /∈ x↔ z /∈ ∅) Regel 8 [1] mit Proposition 1 (ao) [1]
↔ ∀z (z /∈ x↔ >) Proposition 12
↔ ∀z z /∈ x Regel 8 [1] mit Proposition 1 (be) [1]

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.axiom:identityIsReflexive
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:derivedQuantification
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:replaceEquiFormula
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/ao
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:replaceEquiFormula
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/be


Kapitel 2

Boolesche Algebra der
Klassen

Die elementaren Operationen von Klassen und ihre Eigenschaften werden nun
beschrieben.

Eine Boolesche Algebra, oft auch Boolescher Verband genannt, ist eine spezielle
algebraische Struktur, die die Eigenschaften der logischen Operatoren und, oder,
nicht sowie die Eigenschaften der mengentheoretischen Verknüpfungen Durch-
schnitt, Vereinigung und Komplement abstrahiert.

Sie ist benannt nach G. Boole, der sie in der Mitte des 19. Jahrhunderts defi-
nierte, um algebraische Methoden in der Aussagenlogik anwenden zu können.

2.1 Boolesche Klassenoperatoren

Die Klassenschreibweise Regel 1 ermöglicht die Definition von Klassenoperato-
ren mithilfe logischer Verknüpfungen.

Die Vereinigung zweier Klassen besteht aus den Elementen beider Klassen.

Definition 7 (Vereinigung). [definition:union]

(x ∪ y) = {z | (z ∈ x ∨ z ∈ y)}

Entsprechend wird der Durchschnitt zweier Klassen definiert, als die Klasse, die
aus den Elementen besteht, die in beiden Klassen vorhanden sind.

Definition 8 (Durchschnitt). [definition:intersection]

(x ∩ y) = {z | (z ∈ x ∧ z ∈ y)}

Auch das Komplement einer Klasse kann einfach definiert werden.

Definition 9 (Komplement). [definition:complement]

x = {z | z /∈ x}

Ob eine Menge ein Element der Vereinigung zweier Klassen ist, kann natürlich
auch direkt angegeben werden.

Proposition 14. [theorem:unionMember]

17
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z ∈ (x ∪ y) ↔ (z ∈ x ∨ z ∈ y)

Beweis.
(x ∪ y) = {z | (z ∈ x ∨ z ∈ y)} Definition 7

u ∈ (x ∪ y) ↔ u ∈ {z | (z ∈ x ∨ z ∈ y)} Proposition 3 [1]
u ∈ (x ∪ y) ↔ (M(u) ∧ (u ∈ x ∨ u ∈ y)) Axiom 3
u ∈ (x ∪ y) ↔ ((M(u) ∧ u ∈ x) ∨ (M(u) ∧ u ∈ y)) Proposition 1

(at) [1]
u ∈ (x ∪ y) ↔ (u ∈ x ∨ u ∈ y) Proposition 2

Entsprechendes gilt für den Durchschnitt zweier Klassen.

Proposition 15. [theorem:intersectionMember]

z ∈ (x ∩ y) ↔ (z ∈ x ∧ z ∈ y)

Beweis.
(x ∩ y) = {z | (z ∈ x ∧ z ∈ y)} Definition 7

u ∈ (x ∩ y) ↔ u ∈ {z | (z ∈ x ∧ z ∈ y)} Proposition 3 [1]
u ∈ (x ∩ y) ↔ (M(u) ∧ (u ∈ x ∧ u ∈ y)) Axiom 3
u ∈ (x ∩ y) ↔ ((M(u) ∧ u ∈ x) ∧ u ∈ y)) Proposition 1 (aj) [1]
u ∈ (x ∩ y) ↔ (u ∈ x ∧ u ∈ y) Proposition 2

Analoges gilt für das Komplement, dort muss jedoch die Mengeneigenschaft
explizit abgeprüft werden.

Proposition 16. [theorem:complementMember]

z ∈ x ↔ (M(z) ∧ z /∈ x)

Beweis.
x = {z | z /∈ x} Definition 9

u ∈ x ↔ u ∈ {z | z /∈ x} Proposition 3 [1]
u ∈ x ↔ (M(u) ∧ u /∈ x) Axiom 3

Die vorherigen Sätze zeigen die Übertragbarkeit der Eigenschaften der logischen
Verknüpfungen ∨, ∧ und ¬ auf die Klassenverknüpfungen ∪, ∩ und .̄ Deshalb
lassen sich die entsprechenden logischen Gesetzmässigkeiten direkt auf die Klas-
senverknüpfungen übertragen.

Proposition 17. [theorem:unionIntersectionComplement]

(x ∪ y) = (y ∪ x) (a)
(x ∩ y) = (y ∩ x) (b)

((x ∪ y) ∪ z) = (x ∪ (y ∪ z)) (c)
((x ∩ y) ∩ z) = (x ∩ (y ∩ z)) (d)

x = (x ∪ x) (e)
x = (x ∩ x) (f)
x = x (g)

(x ∪ y) = (x ∩ y) (h)
(x ∩ y) = (x ∪ y) (i)

(x ∪ (y ∩ z)) = ((x ∪ y) ∩ (x ∪ z)) (j)
(x ∩ (y ∪ z)) = ((x ∩ y) ∪ (x ∩ z)) (k)

∅ = V (l)

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:leibnizEquivalence
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:leibnizEquivalence
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/aj
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:leibnizEquivalence
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V = ∅ (m)
(x ∩V) = x (n)
(x ∩ ∅) = ∅ (o)

(x ∪V) = V (p)
(x ∪ ∅) = x (q)
(x ∪ x) = V (r)
(x ∩ x) = ∅ (s)

Beweis. Exemplarisch beweisen wir (g).

u ∈ x ↔ (M(u) ∧ u ∈ x) Definition 9
↔ (⊥ ∨ (M(u) ∧ u ∈ x)) Proposition 1 (ax) [1]
↔ ((M(u) ∧ ¬M(u)) ∨ (M(u) ∧ u ∈ x)) Proposition 1 (az) [1]
↔ (M(u) ∧ (¬M(u)) ∧ u ∈ x)) Proposition 1 (at) [1]
↔ (M(u) ∧ (¬M(u)) ∧ ¬¬u ∈ x)) Proposition 1 (am) [1]
↔ (M(u) ∧ (¬M(u)) ∧ ¬u /∈ x)) Definition 2
↔ (M(u) ∧ ¬(M(u)) ∨ u /∈ x)) Proposition 1 (aq) [1]
↔ (M(u) ∧ ¬(u ∈ x)) Proposition 16
↔ (M(u) ∧ u /∈ x) Definition 2
↔ u ∈ x Proposition 16

Also haben wir gezeigt: u ∈ x↔ u ∈ x Nun können wir weiter schließen.

u ∈ x ↔ u ∈ x
∀u (u ∈ x ↔ u ∈ x) Regel 11 [1]
∀u u ∈ x ↔ ∀u u ∈ x Proposition 2 (c) [1]

x = x Proposition 3

2.2 Boolsche Algebra

Die Klassen bilden mit den Operatoren ∩, ∪, ¯ und den Konstanten ∅, V eine
Boolesche Algebra.

+++ Referenzen zu Kommutativität, Assoziativität, Distributivität, Idempo-
tenz, etc.

2.3 Ordnung

Für eine Boolsche Algebra kann eine kanonische Teilordnung definiert werden.
Daher können wir auch für die Klassenalgebra eine Teilordnung festlegen.

Wir definieren die Teilklassenrelation durch eine Schnittklassenbildung.

Definition 10 (Teilklasse). [definition:subclass]

x ⊆ y ↔ (x ∩ y) = x

Sind x und y Mengen sagen wir auch: x ist Teilmenge von y.

Die übliche Definition der Teilklassenrelation erhalten wir nun als Satz.

Proposition 18. [theorem:subsetIfMemberschipImpl]

x ⊆ y ↔ ∀z (z ∈ x → z ∈ y)

http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/ax
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/az
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/at
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/am
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:propositionalCalculus/aq
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.rule:derivedQuantification
http://www.qedeq.org/0_04_03/doc/math/qedeq_logic_v1_de.pdf#l.theorem:predicateCalculus/c
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Diese Relation ist reflexiv, transitiv und antisymmetrisch, definiert also eine
Teilordnung mit ∅ als kleinstem und V als größtem Element.

Proposition 19. [theorem:subsetIsPartialOrdered]

x ⊆ x (a)
(x ⊆ y ∧ y ⊆ z) → x ⊆ z (b)
(x ⊆ y ∧ y ⊆ x) ↔ x = y (c)

∅ ⊆ x (d)
x ⊆ V (e)

x ⊆ ∅ → x = ∅ (f)
V ⊆ x → x = V (g)

Eine Schnittklasse ist immer Teilmenge ihrer Ausgangsklassen.

Proposition 20. [theorem:intersectionIsSubset]

(x ∩ y) ⊆ x (a)
(x ∩ y) ⊆ y (b)

Eine Vereinigungsklasse hat ihre Ausgangsklassen als Teilklassen.

Proposition 21. [theorem:unionIsSuperset]

x ⊆ (x ∪ y) (a)
y ⊆ (x ∪ y) (b)

Für zwei Teilklassen ist auch die Vereinigungsklasse Teilklasse. Und falls eine
Klasse Teilklasse von zwei Klassen ist, dann ist sie auch Teilklasse der Schnitt-
klasse. Beide Beziehungen sind auch umkehrbar.

Proposition 22. [theorem:subsetAndAddition]

(x ⊆ z ∧ y ⊆ z) ↔ (x ∪ y) ⊆ z (a)
(z ⊆ x ∧ z ⊆ y) ↔ z ⊆ (x ∩ y) (b)

Bei Schnitt oder Vereinigung bleibt eine Teilklassenbeziehung erhalten.

Proposition 23. [theorem:subsetAddition]

x ⊆ y → (x ∪ z) ⊆ (y ∪ z) (a)
x ⊆ y → (x ∩ z) ⊆ (y ∩ z) (b)

Bei der Bildung des Komplements kehrt sich die Teilklassenbeziehung um.

Proposition 24. [theorem:subsetComplement]

x ⊆ y ↔ y ⊆ x

Für das Komplement und die Teilklassenbeziehung gelten die folgenden
Äquivalenzen.

Proposition 25. [theorem:subsetComplementEquations]

x ⊆ y ↔ (x ∩ y) = ∅ (a)
x ⊆ y ↔ (x ∪ y) = V (b)
x ⊆ y ↔ (x ∩ y) = ∅ (c)

(x ∩ y) ⊆ z ↔ x ⊆ (y ∪ z) (d)
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2.4 Einerklassen und Klassenpaare

Eine Klasse kann auch durch explizite Auflistung ihrer Elemente definiert wer-
den.

Insbesondere kann durch Angabe eines Elements die sogenannte Einerklasse
festgelegt werden. Wiederum mit Regel 1 können wir die Sprachsyntax erweitern
und eine neue abkürzende Schreibweise einführen.

Definition 11 (Einerklasse). [definition:singleton]

{x} = {y | (M(x) → y = x)}

Da der Ausdruck {x} für jegliches x definiert ist, kann er auch für den Fall, dass
x eine echte Klasse ist, gebildet werden. In diesem Fall erfüllen alle Mengen
y die Bedingung M(y) ∧ (M(x) → y = x) und die Einerklasse ist mit der
Allklasse identisch. Das führt zu einem technisch einfacheren Umgang mit der
Einerklasse.1

Für Mengen enthält die Einerklasse wie gewünscht nur die Menge selbst.

Proposition 26. [theorem:setSingletonHasSetAsOnlyElement]

M(x) → ∀z (z ∈ {x} ↔ z = x)

Für echte Mengen ist die Einerklasse mit der Allklasse identisch.

Proposition 27. [theorem:properSingletonIsUniversalClass]

¬M(x) → {x} = V

Einerklasse einer Menge zu sein ist äquivalent dazu Element seiner Einerklasse
zu sein.

Proposition 28. [theorem:setSingletonEqualHasItselfAsElement]

M(x) ↔ x ∈ {x}

Nun kann einfach durch Vereinigung zweier Einerklassen das Paar zweier Klas-
sen definiert werden.

Definition 12 (Paar). [definition:pair]

{x, y} = ({x} ∪ {y})

Ein Klassenpaar kann auch direkt, d. h. ohne Zuhilfenahme der Einerklassen
beschrieben werden.

Proposition 29. [theorem:classPairIsEqual]

{x, y} = {z | ((M(x) ∧ M(y)) → (z = x ∨ z = y))}

Für Klassenpaare, die aus Mengen gebildet werden, kann die Eigenschaft, Ele-
ment des Klassenpaares zu sein, einfacher ausgedrückt werden.

Proposition 30. [theorem:membershipOfClassPair]

1Andere Autoren wie z. B. auch K. Gödel, definieren {x} durch {y | y = x}.
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(M(x) ∧ M(y)) → ∀z (z ∈ {x, y} ↔ (z = x ∨ z = y))

Falls bei der Klassenpaarbildung eine echte Klasse dabei ist, dann ist das resul-
tierende Klassenpaar mit der Allklasse identisch.

Proposition 31. [theorem:properClassPairIsUniversalClass]

(¬M(x) ∨ ¬M(y)) → {x, y} = V

Wir notieren, dass die Klassenpaarbildung kommutativ ist.

Proposition 32. [theorem:classPairBuildingIsCommutative]

{x, y} = {y, x}

Die Einerklasse ist ein Spezialfall des Klassenpaares.

Proposition 33. [theorem:singletonIsClassPair]

{x} = {x, x}

Menge zu sein ist äquivalent dazu, Element eines Klassenpaares zu sein.

Proposition 34. [theorem:setEquiInClassPair]

M(x) ↔ x ∈ {x, y}

Für Mengen ist die Elementbeziehung äquivalent zur Teilklassenbeziehung für
die zugehörige Einerklasse.

Proposition 35. [theorem:elementEquiSingletonSubclass]

M(x) → (x ∈ y ↔ {x} ⊆ y)

Die Gleichheit von aus Mengen gebildeten Klassenpaaren ist wie erwartet.

Proposition 36. [theorem:pairIdentities]

(M(x) ∧ M(y) ∧ M(u) ∧ M(v)) → ({x, y} = {u, v} → ((x =
u ∧ y = v) ∨ (x = v ∧ y = u)))

2.5 Unendliche Boolsche Operatoren

Es können auch beliebige Schnittklassen und Vereinigungsklassen gebildet wer-
den. Dazu muss nur festgelegt werden, über welche Klassen jeweils geschnitten
bzw. vereinigt wird.

Für eine Klasse von Mengen wird ein Produkt so definiert, dass genau die Ele-
mente, die in allen Mengen enthalten sind, in dem Produkt liegen.

Definition 13 (Mengenprodukt). [setProduct]⋂
x = {z | ∀y (y ∈ x → z ∈ y)}
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Diese Funktion kann als Verallgemeinerung der Schnittklassenbildung angesehen
werden. Siehe auch Proposition 46.

Wir sagen auch, dass die Klasse x eine Mengenfamilie festlegt. Jedes Element
von x ist ein Mitglied der Familie.

Wie üblich können wir die Elementbeziehung zum Mengenprodukt wie folgt
beschreiben.

Proposition 37. [theorem:setProductMembership]

z ∈
⋂

x ↔ (M(z) ∧ ∀y (y ∈ x → z ∈ y))

Für den Speziallfall x = ∅ erhalten wir.

Proposition 38. [theorem:emptySetProduct]⋂
∅ = V

Falls wir das Mengenprodukt einer nichtleeren Klasse bilden, können wir die
Mengenbedingung weglassen.

Proposition 39. [theorem:nonEmptySetProductMembership]

x 6= ∅ → (z ∈
⋂

x ↔ ∀y (y ∈ x → z ∈ y))

Analog können wir die Mengensumme definieren. Genau die Elemente, die in
irgend einer der Mengen vorkommen, sollen in der Summe liegen.

Definition 14 (Mengensumme). [definition:setSum]⋃
x = {z | ∃y (y ∈ x ∧ z ∈ y)}

Die Zugehörigkeit zur Mengensumme kann wie folgt ausgedrückt werden.

Proposition 40. [theorem:setSumMembership]

z ∈
⋃

x ↔ ∃y (y ∈ x ∧ z ∈ y)

Hier können wir die Mengenbedingung M(z) weglassen.

Für die leere Klasse erhalten wir.

Proposition 41. [theorem:emptySetSum] ⋃
∅ = ∅

Die Teilklassenrelation verhält sich zu Mengenprodukt und Mengensumme wie
folgt.

Proposition 42. [theorem:subsetSumProductImplication]

x ⊆ y →
⋂

y ⊆
⋂

x (a)
x ⊆ y →

⋃
x ⊆

⋃
y (b)

Die Elementbeziehung induziert Teilklassenbeziehungen in der folgenden Weise.

Proposition 43. [theorem:membershipToSetProductAndSum]
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x ∈ y → x ⊆
⋃

y (a)
x ∈ y →

⋂
y ⊆ x (b)

Die Vereinigungs- und Schnittklassenbildung passt zu Mengensumme und Men-
genprodukt wie nachfolgend beschrieben.

Proposition 44. [theorem:unionIntersectionSetSumProduct]⋂
(x ∪ y) = (

⋂
x ∩

⋂
y) (a)⋃

(x ∪ y) = (
⋃

x ∪
⋃

y) (b)⋃
(x ∩ y) ⊆ (

⋃
x ∩

⋃
y) (c)

Für den Fall einer nichtleeren Mengenfamilie haben wir dieses Ergebnis.

Proposition 45. [theorem:nonEmptySumProductSubSet]

∀x (x 6= ∅ →
⋂

x ⊆
⋃

x)

Für Mengenpaare erhalten wir die erwarteten Ergebnisse.

Proposition 46. [theorem:setPairSetSumProduct]

(M(x) ∧ M(y)) →
⋂
{x, y} = (x ∩ y) (a)

(M(x) ∧ M(y)) →
⋃
{x, y} = (x ∪ y) (b)

Für Einermengen erhalten wir analoge Aussagen.

Proposition 47. [theorem:singletonSetSumProduct]

M(x) →
⋂
{x} = x (a)

M(x) →
⋃
{x} = x (b)

2.6 Potenzklassenbildung

Ein wichtiger Operator fehlt uns noch.

Aus der Teilklassenrelation lässt sich ein weiterer Klassenoperator gewinnen, die
Potenzklassenbildung.

Definition 15 (Potenzklasse). [definition:power]

P(x) = {z | z ⊆ x}

Wir erinnern noch einmal daran, dass nur Mengen in der Potenzklasse enthalten
sein können.

Für diesen neuen Operator gelten die folgenden Aussagen.

Proposition 48. [theorem:powerPropositions]

z ∈ P(x) ↔ (M(z) ∧ z ⊆ x) (a)
P(V) = V (b)
P(∅) = {∅} (c)

M(x) ↔ x ∈ P(x) (d)
x ⊆ y → P(x) ⊆ P(y) (e)

(M(x) ∧ P(x) ⊆ P(y)) → x ⊆ y (f)
P((x ∩ y)) = (P(x) ∩P(y)) (g)
(P(x) ∪P(y)) ⊆ P((x ∪ y)) (h)

x ⊆ P(
⋃

x) (i)⋃
P(x) ⊆ x (j)
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Speziell für die Potenzklasse einer Menge lässt sich Proposition 48 verschärfen.

Proposition 49. [theorem:powerSetPropositions]

M(x) → x =
⋃

P(x)

Für Mengen heben sich die Potenzklassenbildung und die Mengensumme (in
dieser Reihenfolge) gegenseitig auf. Später können wir die Mengenbedingung
fallenlassen, da wir dann über weitere Axiome verfügen.
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Kapitel 3

Mengen, Relationen und
Funktionen

In diesem Kapitel wird noch einmal genauer auf die Mengeneigenschaft einge-
gangen und es werden neue Axiome angegeben, um die Existenz von Mengen
abzusichern.

Um Relationen definieren zu können, wird der Begriff des geordneten Klassen-
paares benötigt, der es ermöglicht, das cartesische Produkt von Klassen zu de-
finieren. Relationen sind Teilklassen von cartesischen Produkten und bilden zu-
sammen mit bestimmten Operationen eine universelle Algebra.

Spezielle Relationen sind die Äquivalenzrelationen, die einen etwas weiter ge-
fassten Gleichheitsbegriff ermöglichen. Funktionen sind ebenfalls spezielle Rela-
tionen, Das Fraenkelsche Ersetzungsaxiom garantiert, dass Mengen auf Mengen
abgebildet werden.

3.1 Mengen

Zur Darstellung der Booleschen Klassenalgebra wurden noch keine mengentheo-
retischen Axiome benötigt Im Folgenden werden weitere Axiome vorgestellt, die
Bedingungen dafür angeben, wann eine Klasse eine Menge ist.

Die leere Klasse soll eine Menge sein.

Axiom 4 (Axiom der leeren Menge). [axiom:emptySet]

M(∅)

Damit haben wir zum ersten Mal Kenntnis über die Existenz einer Menge.

Um die Mengeneigenschaft für Paare von Mengen zu erhalten, haben wir das
folgende Axiom.

Axiom 5 (Axiom der Paarmenge). [axiom:pairingSet]

(M(x) ∧ M(y)) → M({x, y})

Auch die Mengensumme einer Menge soll wieder eine Menge sein.

Axiom 6 (Summenmengenaxiom). [axiom:setSumSet]

M(x) → M(
⋃

x)

27



28 KAPITEL 3. MENGEN, RELATIONEN UND FUNKTIONEN

Die Potenzklasse einer Menge soll auch wieder eine Menge sein.

Axiom 7 (Axiom der Potenzmenge). [axiom:powerSet]

M(x) → M(P(x))

Die Teilklasse einer Menge soll wieder eine Menge sein.

Axiom 8 (Teilmengenaxiom). [axiom:subset]

(M(x) ∧ y ⊆ x) → M(y)

Die obigen Mengenaxiome ermöglichen es uns Mengen zu konstruieren. Durch
das Axiom 4 haben wir eine erste Menge ∅. Durch die Anwendung von Axiom 7
erhalten wir die Menge {∅}. Die erneute Bildung der Potenzmenge erzeugt die
Menge {∅, {∅}}. Durch wiederholtes Anwendung der Prozedur bekommen wir
eine beliebige Anzahl von Mengen.1

Weiterhin stellen wir fest, dass wir mit unseren bisherigen Axiomen nur die
Existenz von Mengen mit einer endlichen Elementanzahl nachweisen können.
Diese endlichen Mengen sind ”sicher“ in dem Sinne, dass sie nicht zu den Wi-
dersprüchen führen, wie sie in der uneingeschränkten Mengenlehre Zermelos
auftreten,

Mit Hilfe der neuen Axiome können weitere Folgerungen gezogen werden.

Proposition 50. [theorem:isSet]

(¬M(y) ∧ y ⊆ x) → ¬M(x) (a)
¬M(V) (b)

(M(x) ∧ M(y)) → M((x ∪ y)) (c)
(M(x) ∧ M(y)) → M((x ∩ y)) (d)

M(x) → M({x}) (e)
M(x) → ¬M(x) (f)
x =

⋃
P(x) (g)

M(x) ↔ M(
⋃

x) (h)⋂
V = ∅ (i)⋃
V = V (j)

x 6= ∅ → M(
⋂

x) (k)

Wir stellen abschließend fest, dass wir Axiom 4 (Axiom der leeren Menge) in den
Beweisen bisher noch nicht verwendet haben. Da bedeutet, dass alle bisherigen
Sätze unabhängig von der Existenz einer einzigen Menge gültig sind.

3.2 Geordnetes Klassenpaar

Das Konzept eines geordneten Paares ist für die weitere Entwicklung unserer
Theorie wichtig. Es ermöglicht uns die Objekte anzuordnen. Bisher hingen unse-
re Objektzusammenfassungen nicht von der Reihenfolge der Sammlung ab. Wir
wollen nun aber auch nach der Zusammenfassung herausfinden können, welches
das erste Element und welches das zweite Element war.

Die Definition eines geordneten Paares 〈x, y〉 erfolgt nach N. Wiener (1914)
bzw. K. Kuratowski (1921).

1Dass die Mengen alle paarweise voneinander verschieden sind, ist leicht zu zeigen.
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Definition 16 (Geordnetes Paar). [definition:orderedPair]

〈x, y〉 = {{x}, {x, y}}

Für geordnete Paare von Mengen spielt die Reihe der angegebenen Elemente
eine Rolle. Geordnete Paare sollten nur dann identisch sein, wenn ihre ersten
Elemente und ihre zweiten Elemente identisch sind.

Proposition 51. [theorem:orderedPairEquality]

(M(x) ∧ M(y) ∧ M(u) ∧ M(v)) → (〈x, y〉 = 〈u, v〉 → (x = u ∧ y = v))

Ein aus Mengen gebildetes geordnetes Paar ist auch eine Menge. Die Umkehrung
gilt auch.

Proposition 52. [theorem:orderedPairOfSets]

(M(x) ∧ M(y)) ↔ M(〈x, y〉)

Falls eine der Klassen keine Menge ist, dann ist das geordnete Paar mit der
Allklasse identisch.

Proposition 53. [theorem:orderedPairWithNonSet]

(¬M(x) ∨ ¬M(y)) → 〈x, y〉 = V

Um über geordnete Paare sprechen zu können, benötigen wir ein neues Prädikat

”ist ein geordnetes Paar “.

Definition 17 (Eigenschaft geordnetes Paar). [definition:isOrderedPair]

isOrderedPair(x) ↔ ∃u ∃v x = 〈u, v〉

Wir betonen noch einmal, dass auch V ein geordnetes Paar ist. Aber da wir
meistens über Elemente von Klassen sprechen, haben wir nur mit Mengen zu
tun, die eventuell auch geordnete Paare sind.

3.3 Kartesisches Produkt

Für die geordneten Klassenpaare brauchen wir eine Metastruktur. Dafür fassen
wir einfach geordnete Paare in einer Klasse zusammen.

Das Kartesische Produkt2, auch Kreuzprodukt genannt, ist die Klasse aller ge-
ordneter Paare, deren Elemente aus den Ausgangsklassen stammen.

Definition 18 (Kartesisches Produkt). [definition:cartesianProduct]

(x× y) = {z | ∃u ∃v (u ∈ x ∧ v ∈ y ∧ z = 〈u, v〉)}

2Kartesisch oder kartesianisch nach der lateinischen Namensform Cartesius des Philoso-
phen und Mathematikers R. Descartes.
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3.4 Relationen

Es ist wichtig, Relationen zwischen mathematischen Objekten ausdrücken zu
können und sie auch als Objekte behandeln zu können. Es stellt sich heraus, dass
wir keine neuen Objektarten benötigen. Unsere bisherigen Strukturen reichen
aus.

Nun können wir den Begriff der Relation auch innerhalb unserer Mengenlehre
definieren.

Definition 19 (Relation). [definition:relation]

Rel(x) ↔ ∀y (y ∈ x → isOrderedPair(y))

Ein paar Aussagen über Relationen.

Proposition 54. [theorem:relationProperties]

Rel(∅) (a)
Rel((V×V)) (b)

(Rel(x) ∧ Rel(y)) → Rel((x ∩ y)) (c)
(Rel(x) ∧ Rel(y)) → Rel((x ∪ y)) (d)

Wie geben nun eine allgemeine Definition des Begriffs Definitionsbereich an.

Definition 20 (Definitionsbereich). [definition:domain]

Dom(x) = {y | ∃z 〈y, z〉 ∈ x}

Analog zu dem Definitionsbereich legen wir den Wertebereich einer Klasse fest.

Definition 21 (Wertebereich). [definition:range]

Rng(x) = {y | ∃z 〈z, y〉 ∈ x}

3.5 Relationenalgebra

MISSING! OTHER: +++

3.6 Äquivalenzrelationen

MISSING! OTHER: +++

3.7 Abbildungen und Funktionen

MISSING! OTHER: +++

Eine Funktion ist einfach eine spezielle Art von Relation.

Definition 22 (Funktion). [definition:function]

Funct(x) ↔ (Rel(x) ∧ ∀y (y ∈ Dom(x) → ∃!z 〈y, z〉 ∈ x))

Falls der Definitionsbereich einer Funktion eine Menge ist, dann sollte auch ihr
Wertebereich eine Menge sein.
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Axiom 9 (Fraenkelsches Ersetzungsaxiom). [axiom:FraenkelsReplacement]

(Funct(f) ∧ M(Dom(f))) → M(Rng(f))
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Kapitel 4

Natürliche Zahlen

MISSING! OTHER: +++

4.1 Fundierung und Unendlichkeit

MISSING! OTHER: +++

Mengen x sollten sich nicht selbst als Element enthalten oder ein Element besit-
zen, das wiederum x als Element hat. Um diese und andere Enthaltenseinszirkel
auszuschließen, stellen wir das folgende Axiom vor.

Axiom 10 (Fundierungsaxiom). [axiom:foundation]

x 6= ∅ → ∃y (y ∈ x ∧ (y ∩ x) = ∅)

Dieses Axiom heißt auch Regularitätsaxiom.

Eine naheliegende Klassenerweiterung ist die Bildung der Vereinigungsmenge
mit der Einerklasse.

Definition 23 (Nachfolger). [definition:successor]

x′ = (x ∪ {x})

Weil x /∈ x fügt die Nachfolgerfunktion der orginalen Klasse genau ein Element
hinzu.

Wir wollen eine Menge mit unendlich vielen Elementen haben. So fordern wir
einfach ihre Existenz.

Axiom 11 (Unendlichkeitsaxiom). [axiom:infinity]

∃x (M(x) ∧ ∅ ∈ x ∧ ∀y (y ∈ x → y′ ∈ x))

4.2 Definition und Grundeigenschaften

MISSING! OTHER: +++

4.3 Induktion

MISSING! OTHER: +++

33



34 KAPITEL 4. NATÜRLICHE ZAHLEN

4.4 Folgen und normale Funktionen

MISSING! OTHER: +++

4.5 Rekursion

MISSING! OTHER: +++



Kapitel 5

Auswahlaxiom

+++

5.1 Wohlordnungen

+++

Nun kommen wir zu dem bekannten Auswahlaxiom. Wir formulieren es für
Relationen.

Axiom 12 (Auswahlaxiom). [axiom:choice]

Rel(x) → ∃y (Funct(y) → (y ⊆ x ∧ Dom(x) = Dom(y)))

5.2 Anwendungen des Auswahlaxioms

MISSING! OTHER:
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Kapitel 6

Kontinuum
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