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Summary

The project Hilbert II deals with the formal presentation and documentation
of mathematical knowledge. For this reason Hilbert II provides a program suite
to accomplish that tasks. The concrete documentation of mathematical basics
is also a purpose of this project. For further informations about the Hilbert II
project see under http://www.qedeq.org.

This document describes the logical axioms and the rules and meta rules that
are used to derive new propositions.

The presentation is axiomatic and in a formal form. A formal calculus is given
that enables us to derive all true formulas. Additional derived rules, theorems,
definitions, abbreviations and syntax extensions basically correspond with the
mathematical practice.

This document is also written in a formal language, the original text is a XML
file with a syntax defined by the XSD http://www.qedeq.org/current/xml/
qedeq.xsd.

This document is work in progress and is updated from time to time. Especially
at the locations marked by ”+++“ additions or changes will take place.
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Foreword

The whole mathematical universe can be unfolded by set–theoretic means. Be-
side the set–theoretic axioms only logical axioms and rules are required. These
elementary basics are sufficient to define the most complex mathematical struc-
tures and enable us to prove propositions for those structures. This approach
can be fully formalized and can be reduced to simple manipulations of character
strings. The semantical interpretation of these character strings represent the
mathematical universum.

It is more than convenient to introduce abbreviations and use further derivation
rules. But these comforts could be eliminated and replaced by the basic terms
at any time1.

This project has its source in a childhood dream to undertake a formalization of
mathematics. In the meantime the technical possibilities are highly developed
so that a realization seems within reach.

Special thanks go to the professors W. Kerby and V. Günther of the university
of Hamburg for their inspiring lectures about logic and axiomatic set theory.
Without these important impulses this project would not exist.

I am deeply grateful to my wife Gesine Dräger and our son Lennart for their
support and patience.

Hamburg, december, 2010
Michael Meyling

1At least this is theoretically possible. This transformation is not in each case practically
realizable due to restrictions in time and space. For example it is not possible to write down
the natural number 1, 000, 000, 000 completely in set notation.
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Introduction

At the beginning we quote D. Hilbert from the lecture ”The Logical Basis of
Mathematics“, September 19222.

”The fundamental idea of my proof theory is the following:

All the propositions that constitute in mathematics are converted
into formulas, so that mathematics proper becomes all inventory of
formulas. These differ from the ordinary formulas of mathematics
only in that, besides the ordinary signs, the logical signs especially

”implies“ (→) and for ”not“ ( ¯ ) occur in them. Certain formulas,
which serve as building blocks for the formal edifice of mathematics,
are called axioms. A proof is an array that must be given as such
to our perceptual intuition of it of inferences according to the schema

A

A→ B

B

where each of the premises, that is, the formulae, A and A → B
in the array either is an axiom or directly from an axiom by sub-
stitution, or else coincides with the end formula B of an inference
occurring earlier in the proof or results from it by substitution. A
formula is said to be provable if it is either an axiom or the end
formula of a proof.“

At the beginning there is logic. Logic is the analysis of methods of reasoning.
It helps to derive new propositions from already given ones. Logic is universally
applicable.

In the 1928 published book Grundzüge der theoretischen Logik (Principles of
Theoretical Logic) D. Hilbert and W. Ackermann formalized propositional cal-
culus in a way that build the basis for the logical system used here. 1959
P. S. Novikov specified a refined axiom and rule system for predicate calcu-
lus.

In this text we present a first order predicate calculus with identity and functors
that is the starting point for the development of the mathematical theory. Only
the results without any proofs and in short form are given in the following.3

2Lecture given at the Deutsche Naturforscher-Gesellschaft, September 1922.
3If there is time proofs will be added.
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Chapter 1

Language

In this chapter we define a formal language to express mathematical proposi-
tions in a very precise way. Although this document describes a very formal
approach to express mathematical content it is not sufficent to serve as a defi-
nition for an computer readable document format. Therefore such an extensive
specification has to be done elsewhere. The choosen format is the Extensible
Markup Language abbreviated XML. XML is a set of rules for encoding docu-
ments electronically.1 The according formal syntax specification can be found
at http://www.qedeq.org/current/xml/qedeq.xsd. It specifies a complete
mathematical document format that enables the generation of LATEXbooks and
makes automatic proof checking possible. Further syntax restrictions and some
explanations can be found at http://www.qedeq.org/current/doc/project/
qedeq_logic_language_en.pdf.

Even this document is (or was generated) from an XML file that can be found
here: http://wwww.qedeq.org/0_04_01/doc/math/qedeq_logic_v1.xml. But
now we just follow the traditional mathematical way to present the elements of
mathematical logic.

1.1 Terms and Formulas

We use the logical symbols L = { ‘¬’, ‘∨’, ‘∧’, ‘↔’, ‘→’, ‘∀’, ‘∃’ }, the predi-
cate constants C = {cki | i, k ∈ ω}, the function variables2 F = {fk

i | i, k ∈
ω ∧ k > 0}, the function constants3 H = {hk

i | i, k ∈ ω}, the subject variables
V = {vi | i ∈ ω}, as well as predicate variables P = {pk

i | i, k ∈ ω}.4 For
the arity or rank of an operator we take the upper index. The set of predicate
variables with zero arity is also called set of proposition variables or sentence
letters: A := {p0

i | i ∈ ω}. For subject variables we write short hand certain
lower letters: v1 = ‘u’, v2 = ‘v’, v3 = ‘w’, v4 = ‘x’, v5 = ‘y’, v5 = ‘z’. Further-
more we use the following short notations: for the predicate variables pn

1 = ‘φ’
und pn

2 = ‘ψ’, where the appropriate arity n is calculated by counting the subse-
quent parameters, for the proposition variables a1 = ‘A’, a2 = ‘B’ and a3 = ‘C’,

1See http://www.w3.org/XML/ for more information.
2Function variables are used for a shorter notation. For example writing an identity propo-

sition x = y → f(x) = f(y). Also this introduction prepares for the syntax extension for
functional classes.

3Function constants are also introduced for convenience and are used for direct defined
class functions. For example to define building of the power class operator, the union and in-
tersection operator and the successor function. All these function constants can be interpreted
as abbreviations.

4By ω we understand the natural numbers including zero. All involved symbols are pairwise

disjoint. Therefore we can conclude for example: fk
i = fk′

i′ → (k = k′ ∧ i = i′) and hk
i 6= vj .
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12 CHAPTER 1. LANGUAGE

for the function variables: fn
1 = ‘f ’ und fn

2 = ‘g’, where again the appropriate
arity n is calculated by counting the subsequent parameters. All binary propo-
sitional operators are written in infix notation. Parentheses surrounding groups
of operands and operators are necessary to indicate the intended order in which
operations are to be performed. E. g. for the operator ∧ with the parameters A
and B we write (A ∧B).

In the absence of parentheses the usual precedence rules determine the order
of operations. Especially outermost parentheses are omitted. Also empty paren-
theses are stripped.

The operators have the order of precedence described below (starting with the
highest).

¬,∀,∃
∧
∨
→,↔

The term term is defined recursively as follows:

1. Every subject variable is a term.

2. Let i, k ∈ ω and let t1, . . . , tk be terms. Then hk
i (t1, . . . , tk) is a term and

if k > 0, so fk
i (t1, . . . , tk) is a term too.

Therefore all zero arity function constants {h0
i | i ∈ ω} are terms. They are

called individual constants.5

We define a formula and the relations free and bound subject variable recursivly
as follows:

1. Every proposition variable is a formula. Such formulas contain no free or
bound subject variables.

2. If pk is a predicate variable with arity k and ck is a predicate con-
stant with arity k and t1, t2, . . . , tk are terms, then pk(t1, t2, . . . tk) and
ck(t1, t2, . . . , tk) are formulas. All subject variables that occur at least in
one of t1, t2, . . . , tk are free subject variables. Bound subject variables does
not occur.6

3. Let α, β be formulas in which no subject variables occur bound in one
formula and free in the other. Then ¬α, (α ∧ β), (α ∨ β), (α → β) and
(α↔ β) are also formulas. Subject variables which occur free (respectively
bound) in α or β stay free (respectively bound).

4. If in the formula α the subject variable x1 occurs not bound7, then also
∀x1 α and ∃x1 α are formulas. The symbol ∀ is called universal quantifier
and ∃ as existential quantifier .

Except for x1 all free subject variables of α stay free. All bound subject
variables are still bound and additionally x1 is bound too.

All formulas that are only built by usage of 1. and 3. are called formulas of the
propositional calculus.

5In an analogous manner subject variables might be defined as function variables of zero
arity. Because subject variables play an important role they have their own notation.

6This second item includes the first one, which is only listed for clarity.
7This means that x1 is free in the formula or does not occur at all.
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For each formula α the following proposition holds: the set of free subject vari-
ables is disjoint with the set of bound subject variables..8

If a formula has the form ∀x1 α respectively ∃x1 α then the formula α is called
the scope of the quantifier ∀ respectively ∃.
All formulas that are used to build up a formula by 1. to 4. are called part
formulas.

8Other formalizations allow for example ∀x1 α also if x1 occurs already bound within α.
Also propositions like α(x1) ∧ (∀ x1 β) are allowed. In this formalizations free and bound
are defined for a single occurrence of a variable.
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Chapter 2

Axioms and Rules of
Inference

We now state the system of axioms for the predicate calculus and present the
rules for obtaining new formulas from them.

2.1 Axioms

The language of our calculus bases on the formalizations of D. Hilbert, W. Ack-
ermann[3], P. Bernays and P. S. Novikov [4]. New rules can be derived from
the herein presented. Only these meta rules lead to a smooth flowing logical
argumentation.

We want to present the axioms, definitions and rules in an syntactical manner
but to motivate the choosen form we already give some semantical interpreta-
tions.

The logical operators of propositional calculus ‘¬’, ‘∨’, ‘∧’, ‘→’ and ‘↔’ combine
arbitrary propositions to new propositions. A proposition is a statement that
affirms or denies something and is either ”true“ or ”false“ (but not both).1

The binary operator ‘∨’ (logical disjunction) combines the two propositions α
and β into the new proposition α ∨ β. It results in true if at least one of its
operands is true.

The unary operator ‘¬’ (logical negation) changes the truth value of a propo-
sition α. ¬α has a value of true when its operand is false and a value of false
when its operand is true.

The logical implication (if . . . then) the, logical conjunction (and) and the logical
equivalence (logical biconditional) are defined as abbreviations.2

The logical implication (‘if . . . then’) could be defined as follows.

α→ β :↔ ¬α ∨ β

The logical conjunction (‘and’) could be defined with de Morgan.

α ∧ β :↔ ¬(¬α ∨ ¬β)

1Later on we will define the symbols > and ⊥ as truth values.
2Actually the symbols ∧,→,↔ are defined later on and are a syntax extension. But for

convenience these symbols are already part of the logical language.
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The logical equivalence (‘iff’) is defined as usual.

α↔ β :↔ (α → β) ∧ (β → α)

Now we come to the first axiom of propositional calculus. This axiom enables
us to get rid of an unnecessary disjunction.

Axiom 1 (Disjunction Idempotence). [axiom:disjunction_idempotence]

(A ∨ A) → A

If a proposition is true, any alternative may be added without making it false.

Axiom 2 (Axiom of Weakening). [axiom:disjunction_weakening]

A → (A ∨ B)

The disjunction should be commutative.

Axiom 3 (Commutativity of the Disjunction). [axiom:disjunction_commutative]

(A ∨ B) → (B ∨ A)

An disjunction could be added at both side of an implication.

Axiom 4 (Disjunctive Addition). [axiom:disjunction_addition]

(A → B) → ((C ∨ A) → (C ∨ B))

If something is true for all x, it is true for any specific y.

Axiom 5 (Universal Instantiation). [axiom:universalInstantiation]

∀x φ(x) → φ(y)

If a predicate holds for some particular y, then there is an x for which the
predicate holds.

Axiom 6 (Existential Generalization). [axiom:existencialGeneralization]

φ(y) → ∃x φ(x)

2.2 Rules of Inference

The following rules of inference enable us to obtain new true formulas from the
axioms that are assumed to be true. From these new formulas we derive further
formulas. So we can successively extend the set of true formulas.

Rule 1 (Modus Ponens). [rule:modusPonens] If both formulas α and α → β are true,
then we can conclude that β is true as well.

Rule 2 (Replace Free Subject Variable). [rule:replaceFree] We start with a true for-
mula. A free subject variable may be replaced by an arbitrary term, provided that
the substituted term contains no subject variable that have a bound occurrence in
the original formula. All occurrences of the free variable must be simultaneously
replaced.
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The prohibition to use subject variables within the term that occur bound in
the original formula has two reasons. First it ensures that the resulting formula
is well-formed. Secondly it preserves the validity of the formula. Let us look at
the following derivation.

∀x ∃y φ(x, y) → ∃y φ(z, y) with axiom 5
∀x ∃y φ(x, y) → ∃y φ(y, y) forbidden replacement: z in y, despite y is

already bound
∀x ∃y x 6= y → ∃y 6= y replace 6= for φ

This last proposition is not valid in many models.

Rule 3 (Rename Bound Subject Variable). [rule:renameBound] We may replace a bound
subject variable occurring in a formula by any other subject variable, provided
that the new variable occurs not free in the original formula. If the variable to be
replaced occurs in more than one scope, then the replacement needs to be made
in one scope only.

Rule 4 (Replace Predicate Variable). [rule:replacePred] Let α be a true formula that
contains a predicate variable p of arity n, let x1, . . . , xn be subject variables
and let β(x1, . . . , xn) be a formula where x1, . . . , xn are not bound. The for-
mula β(x1, . . . , xn) must not contain all x1, . . . , xn as free subject variables.
Furthermore it can also have other subject variables either free or bound.

If the following conditions are fulfilled, then a replacement of all occurrences of
p(t1, . . . , tn) each with appropriate terms t1, . . . , tn in α by β(t1, . . . , tn) results
in another true formula.

• the free variables of β(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of p(t1, . . . , tn) in α contains no bound variable of
β(x1, . . . , xn)

• the result of the substitution is a well-formed formula

See III §5 in [3].

The prohibition to use additional subject variables within the replacement for-
mula that occur bound in the original formula assurs that the resulting formula
is well-formed. Furthermore it preserves the validity of the formla. Take a look
at the following derivation.

φ(x) → ∃y φ(y) with axiom 6
(∃y y = y) ∧ φ(x) → ∃y φ(y)
∃y (y = y ∧ φ(x)) → ∃y φ(y)
∃y (y = y ∧ x 6= y) → ∃y y 6= y forbidden replacment: φ(x) by x 6= y,

despite y is already bound
∃y x 6= y → ∃y y 6= y

The last proposition is not valid in many models.

Analogous to rule 4 we can replace function variables too.

Rule 5 (Replace Function Variable). [rule:replaceFunct] Let α be an already proved
formula that contains a function variable σ of arity n, let x1, . . . , xn be subject
variables and let τ(x1, . . . , xn) be an arbitrary term where x1, . . . , xn are not
bound. The term τ(x1, . . . , xn) must not contain all x1, . . . , xn. as free subject
variables. Furthermore it can also have other subject variables either free or
bound.

If the following conditions are fulfilled we can obtain a new true formula by
replacing each occurrence of σ(t1, . . . , tn) with appropriate terms t1, . . . , tn in
α by τ(t1, . . . , tn).
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• the free variables of τ(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of σ(t1, . . . , tn) in α contains no bound variable of
τ(x1, . . . , xn)

• the result of the substitution is a well-formed formula

Rule 6 (Universal Generalization). [rule:universalGeneralization] If α → β(x1) is a true
formula and α does not contain the subject variable x1, then α→ (∀x1 (β(x1)))
is a true formula too.

Rule 7 (Existential Generalization). [rule:existentialGeneralization] If α(x1) → β is al-
ready proved to be true and β does not contain the subject variable x1, then
(∃x1 α(x1))→ β is also a true formula.

The usage and elimination of abbreviations and constants is also an inference
rule. In many texts about mathematical logic these rules are not explicitly stated
and this text is no exception. But in the exact QEDEQ format corresponding
rules exist.



Chapter 3

Derived Propositions

Now we derive elementary propositions with the axioms and rules of inference
of chapter 2.

3.1 Propositional Calculus

At first we look at the propositional calculus.

To define the predicate true we just combine a predicate and its negation.

Definition 1 (True). [definition:True]

> :↔ A ∨ ¬A

For a precise definition we should have written something like p0
0 = > and

> :↔ (A∧ 6 A).1 In the future we only write the symbol itself. It’s arity should
be evident from the formula.

For the predicate false we just negate true.2

Definition 2 (False). [definition:False]

⊥ :↔ ¬>

We have the following basic propositions.

Proposition 1 (Basic Propositions). [theorem:propositionalCalculus]

> (aa)
¬⊥ (ab)

A → A (ac)
A ↔ A (ad)

(A ∨ B) ↔ (B ∨ A) (ae)
(A ∧ B) ↔ (B ∧ A) (af)

(A ∧ B) → A (ag)
(A ↔ B) ↔ (B ↔ A) (ah)

(A ∨ (B ∨ C)) ↔ ((A ∨ B) ∨ C) (ai)
(A ∧ (B ∧ C)) ↔ ((A ∧ B) ∧ C) (aj)

A ↔ (A ∨ A) (ak)

1In the deeper laying (see http://www.qedeq.org/current/doc/project/qedeq_logic_

language_en.pdf) formal language this predicate has the name TRUE and zero arguments.
So we just have to map names to natural numbers to fulfill the exact definition.

2Analogous to the preceeding definition we can set p01 = ⊥
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20 CHAPTER 3. DERIVED PROPOSITIONS

A ↔ (A ∧ A) (al)
A ↔ ¬¬A (am)

(A → B) ↔ (¬B → ¬A) (an)
(A ↔ B) ↔ (¬A ↔ ¬B) (ao)

(A → (B → C)) ↔ (B → (A → C)) (ap)
¬(A ∨ B) ↔ (¬A ∧ ¬B) (aq)
¬(A ∧ B) ↔ (¬A ∨ ¬B) (ar)

(A ∨ (B ∧ C)) ↔ ((A ∨ B) ∧ (A ∨ C)) (as)
(A ∧ (B ∨ C)) ↔ ((A ∧ B) ∨ (A ∧ C)) (at)

(A ∧ >) ↔ A (au)
(A ∧ ⊥) ↔ ⊥ (av)
(A ∨ >) ↔ > (aw)
(A ∨ ⊥) ↔ A (ax)

(A ∨ ¬A) ↔ > (ay)
(A ∧ ¬A) ↔ ⊥ (az)
(> → A) ↔ A (ba)
(⊥ → A) ↔ > (bb)

(A → ⊥) ↔ ¬A (bc)
(A → >) ↔ > (bd)
(A ↔ >) ↔ A (be)

((A → B) ∧ (B → C)) → (A → C) (bf)
((A ↔ B) ∧ (C ↔ B)) → (A ↔ C) (bg)

((A ∧ B) ↔ (A ∧ C)) ↔ (A → (B ↔ C)) (bh)
((A ∧ B) ↔ (A ∧ ¬B)) ↔ ¬A (bi)
(A ↔ (A ∧ B)) ↔ (A → B) (bj)

(A → B) → ((A ∧ C) → (B ∧ C)) (bk)
(A ↔ B) → ((A ∧ C) ↔ (B ∧ C)) (bl)

(A ∧ (A → B)) → B (bm)
(A ∧ (A → B)) ↔ (A ∧ B) (bn)

3.2 Predicate Calculus

For predicate calculus we achieve the following propositions.

We have the following basic propositions.

Proposition 2 (Basic Propositions). [theorem:predicateCalculus]

∀x (φ(x) → ψ(x)) → (∀x φ(x) → ∀x ψ(x)) (a)
∀x (φ(x) → ψ(x)) → (∃x φ(x) → ∃x ψ(x)) (b)
∀x (φ(x) ↔ ψ(x)) → (∀x φ(x) ↔ ∀x ψ(x)) (c)
∃x (φ(x) ∧ ψ(x)) → (∃x φ(x) ∧ ∃x ψ(x)) (d)
(∀x ψ(x) ∨ ∀x ψ(x)) → ∀x (φ(x) ∨ ψ(x)) (e)
∃x (φ(x) ∨ ψ(x)) ↔ (∃x φ(x) ∨ ∃x ψ(x)) (f)
∀x (φ(x) ∧ ψ(x)) ↔ (∀x φ(x) ∧ ∀x ψ(x)) (g)

∀x ∀y φ(x, y) ↔ ∀y ∀x φ(x, y) (h)
∃x ∃y φ(x, y) ↔ ∃y ∃x φ(x, y) (i)

∀x (φ(x) → A) → (∀x φ(x) → A) (j)
∀x (A → φ(x)) ↔ (A → ∀x φ(x)) (k)
∀x (φ(x) ∧ A) ↔ (∀x φ(x) ∧ A) (l)
∀x (φ(x) ∨ A) ↔ (∀x φ(x) ∨ A) (m)
∀x (φ(x) ↔ A) → (∀x φ(x) ↔ A) (n)

∀x (φ(x) ↔ ψ(x)) → (∀x φ(x) ↔ ∀x ψ(x)) (o)
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3.3 Derived Rules

Beginning with the logical basis logical propositions and metarules can be de-
rived an enable a convenient argumentation. Only with these metarules and
additional definitions and abbreviations the mathematical world is unfolded.
Every additional syntax is conservative. That means: within extended system
no formulas can be derived, that are written in the old syntax but can not
be derived in the old system. In the following such conservative extensions are
introduced.

Rule 8 (Replace by Logical Equivalent Formula). [rule:replaceEquiFormula] Let the for-
mula α↔ β be true. If in a formula δ we replace an arbitrary occurence of α by
β and the result γ is also a formula3 and contains all the free subject variables
of δ, then δ ↔ γ is a true formula.

Rule 9 (Replacement of > by already derived formula). [rule:replaceTrueByTrueFormula] Let
α be an already derived true formula and β a formula that contains >. If we
get a well formed formula γ by replacing an arbitray occurence of > in β with
α then the following formula is also true: β ↔ γ

Rule 10 (Replacement of already derived formula by >). [rule:replaceTrueFormulaByTrue]

Let α be an already derived true formula and β a formula that contains α. If we
get a well formed formula γ by replacing an arbitray occurence of α in β by >
then the following formula is also true: β ↔ γ

Rule 11 (Derived Quantification). [rule:derivedQuantification] If we have already derived
the true formula α(x) and x is not bound in α(x) then the formula ∀x α(x) is
also true.

Rule 12 (General Associativity). [rule:generalAssociativity] If an operator of arity two
fulfills the associative law it also fulfills the general associative law. The opera-
tor can be extended to an operator of arbitrary arity greater one. For example:
instead of (a+ b) + (c+ d) we simply write a+ b+ c+ d.4

Rule 13 (General Commutativity). [rule:generalCommutativity] If an operator fulfills the
general associative law and is commutative then all permutations of parameters
are equal or equivalent.5 For example we have: a+ b+ c+ d = c+ a+ d+ b.

Rule 14 (Deducible from Formula). [rule:definitionDeductionFromFormula] We shall say that
the formula β is deducible from the formula α if the formula β from the totality
of all true formulas of the predicate calculus and the formula α by means of
application of all the rules of the predicate calculus, in which connection both
rules for binding by a quantifier, the rules for substitution in place of predicate
variables and in place of free subject variables must be applied only to predicate
variables or subject variables which do not occur in the formula α and α→ β is
a formula.

Notation: α ` β.

That a formula β is deducible from th formula α must be strictly distinguished
from the deduction of a true formula from the axioms of the predicate calculus.
In the second case more derivation rules are available. For example if A is added
to the axioms then the formula B can be derived. But B is not deducible from
A.

Rule 15 (Deduction Theorem). [rule:deductionTheorem] If the formula β is deducible
from the formula α, then the formula α → β can be derived from the predicate
calculus.

3During that substitution it might be necessary to rename bound variables of β.
4The operator of arity n is defined with a certain bracketing, but every other bracketing

gives the same result.
5That depends on the operator type: term or formula operator.
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Chapter 4

Identity

Everything that exists has a specific nature. Each entity exists as something
in particular and it has characteristics that are a part of what it is. Identity is
whatever makes an entity definable and recognizable, in terms of possessing a
set of qualities or characteristics that distinguish it from entities of a different
type. An entity can have more than one characteristic, but any characteristic it
has is a part of its identity.

4.1 Identity Axioms

We start with the identy axioms.

We define a predicate constant of arity two that shall stand for the identity of
subjects.

Initial Definition 3 (Identity). [definition:identity]

x = y

For convenience we also define the negation of the identity a predicate constant.

Definition 4 (Not Identical). [definition:notEqual]

x 6= y :↔ ¬x = y

Axiom 7 (Reflexivity of Identity). [axiom:identityIsReflexive]

x = x

Axiom 8 (Leibniz’ replacement). [axiom:leibnizReplacement]

x = y → (φ(x) → φ(y))

Axiom 9 (Symmetrie of identity). [axiom:symmetryOfIdentity]

x = y → y = x

Axiom 10 (Transitivity of identity). [axiom:transitivityOfIdentity]

(x = y ∧ y = z) → x = z

We can reverse the second implication in the Leibniz replacement.
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Proposition 3. [theorem:leibnizEquivalence]

x = y → (φ(x) ↔ φ(y))

Proposition 4. [theorem:identyImpliesFunctionalEquality]

x = y → f(x) = f(y)

4.2 Restricted Quantifiers

Every quantification involves one specific subject variable and a domain of dis-
course or range of quantification of that variable. Until now we assumed a fixed
domain of discourse for every quantification. Specification of the range of quan-
tification allows us to express that a predicate holds only for a restricted domain.

At the following definition the replacement formula for α(x) must ”reveal“ its
quantification subject variable. This is usually the first following subject vari-
able.1 In the exact syntax of the QEDEQ format2 the quantification subject
variable is always given.

Axiom 11 (Restricted Universal Quantifier). [axiom:restrictedUniversalQuantifier]

∀ α(x) β(x) ↔ ∀x (α(x) → β(x))

A matching definiton for the restricted existential quantifier is the following.3

Axiom 12 (Restricted Existential Quantifier). [axiom:restrictedExistentialQuantifier]

∃ α(x) β(x) ↔ ∃x (α(x) ∧ β(x))

For restricted quantifiers we find formulas according to Proposition proposi-
tion 2.
+++

To express the existence of only one individuum with a certain property we
introduce a new quantifier.

Axiom 13 (Restricted Uniqueness Quantifier). [axiom:restrictedUniquenessQuantifier]

∃! α(x) β(x) ↔ ∃ α(x) (β(x) ∧ ∀ α(y) (β(y) → x = y))

Rule 16 (Term Definition by Formula). If the formula ∃!x α(x) holds, we
can expand the term syntax by D(x, α(x)). May the formula alpha(x) doesn’t
contain the variable y and let β(y) be a formula that doesn’t contain the variable
x. Then we define a new formula β(D(x, α(x))) by β(y)∧∃!x (α(x)∧x = y). Also
in this abbreviate notation the subject variable x counts as bound, the subject
variable y is arbitrary (if it fulfills the given conditions) and will be ignored in the
abbreviation. Changes in α that lead to another formula α′ because of variable
collision with β must also be done in the abbreviation. All term building rules
are extended accordingly. The expression is also replaceble by ∃!y (β(y) ∧ α(y)
or by β(y) ∧ α(y).

1For example: in the following formula we identify the subject variable m for the second
quantification: ∀ n ∈ N ∀ m ∈ n m < n.

2Again see http://www.qedeq.org/current/xml/qedeq/.
3Matching because of ¬∀ ψ(x) (φ(x)) ↔ ∃ x ¬(ψ(x) → φ(x)) ↔ ∃ x (ψ(x) ∧ ¬φ(x)) ↔

∃ ψ(x) (¬φ(x)).

http://www.qedeq.org/current/xml/qedeq/
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