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Vorwort

Mathematik ist eine Wissenschaft mit einer Struktur, die im Laufe der Zeit
riesige Dimensionen erreicht hat. Diese unglaublich hohe Burg besitzt nur
ein ganz schmales Fundament und ihre Festigkeit griindet sich auf einfachen
pradikatenlogischen Mortel. Im Prinzip kann der Aufbau von jeder Mathemati-
kerin verstanden werden. Von dem neuesten Gipfel mathematischer Erkenntnis
kann jeder Pfad logisch folgerichtig bis in die mengentheoretischen Wurzeln
nachvollzogen werden.

Bei diesem Unternehmen will dieses Dokument Hilfestellung geben. Ziel ist ei-
ne Présentation der mengentheoretischen Wurzeln in versténdlicher Weise. Bei
aller Versténdlichkeit soll es jedoch jederzeit moglich sein, tief in die Details
einzusteigen. Ja sogar bis auf die Ebene eines formal korrekten Beweises hinab.
Dazu gibt es dieses Dokument in verschiedenen Detailierungen. Fiir alle aber
gilt, dass die Formeln in Axiomen, Definitionen und Propositionen in formal
korrekter Form vorliegen.

Wir wollen bei den Wurzeln anfangen. . .

Dieses Dokument ist noch im Entstehen und wird von Zeit zu Zeit aktuali-
siert. Insbesondere werden an den durch ,,+++* gekennzeichneten Stellen noch
Erginzungen oder Anderungen vorgenommen.

Besondere Dank geht an meine Frau Gesine Drdger und unseren Sohn Lennart
fiir ihre Unterstiitzung und ihr Verstéindnis fiir ihnen fehlende Zeit.

Hamburg, Oktober 2007
Michael Meyling
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Einleitung

Nachdem durch die Logik die Art der mathematischen Argumentation vorge-
geben wird, wird in der Mengenlehre ganz allgemein {iber Objekte und ihre
Zusammenfassungen gesprochen. Besonders interessant ist die Mengenlehre da-
durch, dass sie zum einen von eigentlich allen mathematischen Disziplinen ver-
wendet wird. Zum anderen ldsst sich jede mathematische Disziplin innerhalb
der Mengenlehre definieren. Zahlentheorie, Algebra, Analysis und alle weiteren
Gebiete lassen sich darauf aufbauen.

Dieses Dokument beschreibt die mathematischen Grundlagen der Mengenleh-
re. Ziel ist dabei die Bereitstellung von elementaren Ergebnissen der Mengen-
lehre, die in anderen mathematischen Disziplinen benétigt werden. Nach den
Grundlagen wird die Boolsche Algebra der Klassen betrachtet. Es schliessen
sich Betrachtungen iiber Relationen und Funktionen an. Ein weiteres wichti-
ges Ergebnis sind die Definition der natiirlichen Zahlen und die Erfiillung der
Peano-Axiome durch diese, auch auf den Begriff der Rekursion wird eingegan-
gen.

Die Darstellung erfolgt in axiomatischer Weise soll aber im Ergebnis der mathe-
matischen Praxis entsprechen. Daher wird auch das Axiomensystem der Men-
genlehre von A. P. Morse und J. L. Kelley (MK) verwendet.



INHALTSVERZEICHNIS



Kapitel 1

Anfangsgriinde

In diesem Kapitel beginnen wir mit den ganz elementaren Axiomen und Defini-
tionen der Mengenlehre. Wir versuchen nicht eine formale Sprache einzufiihren!
und setzen das Wissen um den Gebrauch von logischen Symbolen voraus. Noch
genauer formuliert: wir arbeiten mit einer Praddikatenlogik erster Stufe mit
Gleichheit.

G. Cantor, der als Begriinder der Mengenlehre gilt, hat in einer Versffentlichung
im Jahre 1895 eine Beschreibung des Begriffs Menge gegeben.

Unter einer ,Menge®“ verstehen wir jede Zusammenfassung M von
bestimmten wohlunterscheidbaren Objekten m unserer Anschauung
oder unseres Denkens (welche die ,,Elemente“ von M genannt wer-
den) zu einem Ganzen.

Diese Zusammenfassung kann iiber die Angabe einer Eigenschaft dieser Elemen-
te erfolgen. Um 1900 wurden verschiedene Widerspriiche dieser naiven Mengen-
lehre entdeckt. Diese Widerspriiche lassen sich auf trickreich gewihlte Eigen-
schaften zurtickfithren.

Es gibt verschiedene Moglichkeiten diese Widerspriiche zu verhindern. In diesem
Text schrinken wir zwar die Angabe von Eigenschaften in keiner Weise ein,
aber wir nennen das Ergebnis der Zusammenfassung zunéchst einmal Klasse.
Zusitzliche Axiome regeln dann, wann eine bestimmte Klasse auch eine Menge
ist. Alle Mengen sind Klassen, aber nicht alle Klassen sind Mengen. Eine Menge
ist eine Klasse, die selbst Element einer anderen Klasse ist. Eine Klasse, die
keine Menge ist, ist nicht Element irgend einer anderen Klasse.

1.1 Klassen und Mengen

Obgleich wir im Wesentlichen iiber Mengen sprechen wollen, haben wir am
Anfang nur Klassen. Dieser Begriff wird nicht formal definiert. Anschaulich ge-
sprochen, ist eine Klasse eine Zusammenfassung von Objekten. Die beteiligten
Objekte heissen auch Elemente der Klasse. Mengen werden dann als eine be-
sondere Art von Klassen charakterisiert.

Die folgenden Definitionen und Axiome folgen dem Aufbau einer vereinfachten
Version der Mengenlehre nach von Neumann-Bernays-Gidel (NBG). Die genaue
Bezeichnung lautet MK nach Morse-Kelley.

IDessen ungeachtet sind die Formeln der Axiome, Definitionen und Propositionen in dem
Ursprungstext dieses Dokuments in einer formalen Sprache notiert. Der Ursprungstext ist eine
XML-Datei, deren Syntax mittels der XSD http://www.qgedeq.org/current/xml/qedeq.xsd
definiert wird.


http://www.qedeq.org/current/xml/qedeq.xsd
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Die hier vorgestellte Mengenlehre hat als Ausgangsobjekte Klassen. Weiterhin
wird nur ein einziges Symbol fiir eine bindre Relation vorausgesetzt: der Ent-
haltenseinoperator.

Initiale Definition 1.1 (Elementbeziehung).

rey

Wir sagen auch z ist Element von y, x gehort zu y, x liegt in y, x ist in y.
Neben der Identitét ist dies das einzige Pradikat welches wir zu Beginn haben.
Alle anderen werden definiert.” Zu Anfang haben wir auch noch keine Funkti-
onskonstanten.

Obgleich wir die Elementbeziehung einfach negieren kénnen, méchten wir dafiir
eine Abkiirzung definieren.

Definition 1.2 (Negation der Elementbeziehung).

xdy = —xEyY

Unser erstes Axiom besagt, dass beliebige Klassen x und y genau dann gleich
sind, wenn sie dieselben Elemente enthalten.?

Axiom 1 (Extensionalitiit).

Vz(z€x < z€y) — = =y

Die Klassen x and y kénnen verschieden definiert sein, beispielsweise:

x = Klasse aller nichtnegativen ganzen Zahlen,
y = Klasse aller ganzen Zahlen, die als Summe von vier Quadraten ge-
schreiben werden konnen,

aber wenn sie dieselben Elemente besitzen, sind sie gleich.

Jetzt legen wir fest, was eine Menge ist.

Definition 1.3 (Menge).

M(z) > yxecy

Mengen sind also nichts anderes, als Klassen mit einer besonderen Eigenschaft.
Eine Klasse ist genau dann eine Menge, wenn sie Element irgendeiner Klasse
ist.

Als erste Folgerung aus dem Extensionalitiitsaxiom erhalten wir das Folgende.*

Proposition 1.4.

VIM(z) (z€x < z€y) — = =y

Beweis. Angenommen es gelte V M(z) (z € ¢ < z € y). Sei z eine beliebige
Klasse. Falls z €  dann gilt z ist eine Menge nach Definition 1.3, und daraus
folgt mit der Annahme z € y. Analog folgt z € y — 2z € z. Da z beliebig,

?Das Gleichheitspriidikat kénnte auch innerhalb der Mengenlehre definiert werden, aber
dann wird auch ein weiters Axiom bendtigt und es ergeben sich technischen Schwierigkeiten
bei der Herleitung der Gleichheitsaxiome.

3Falls wir das Gleichheitspradikat nicht als logisches Symbol voraussetzen wiirden, dann
wiirden wir es hiermit definieren.

4Es wird ein eingeschriinkter Allquantor benutzt, z lduft nur iiber Mengen.
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haben wir Vz (z € z < z € y). Und mit dem Extensionalitétsaxiom 1 erhalten
wir daraus z = y. O

Weiterhin kénnen wir in dem Extensionalitéitsaxiom die Implikation umkehren.

Proposition 1.5.

x =y o Vz(z€x « z€y)

Beweis. Dies ist eine einfache Anwendung des zweiten identitéitslogischen
Axioms. O

Unser néchstes Axiom der Mengenlehre ermoglicht uns in simpler Art und Weise
neue Klassen zu bilden. Eine Klasse wird ganz einfach durch die Angabe einer
pradikatenlogischen Formel charakterisiert.

Axiom 2 (Komprehension).

JzVy (yex < (My) N oy)))

Durch eine kleine Anderung dieses Axioms wiirden wir im Folgenden ein NBG-
Axiomensystem der Mengenlehre erhalten, welches auf John von Neumann,
Isaak Bernays und Kurt Gdédel zuriickgeht. Dazu definieren wir: eine For-
mel, in der alle gebundenen Subjektvariablen auf Mengen restringiert sind wird
pradikative Formel genannt. Priadikative Formeln formalisieren also diejenigen
Eigenschaften, die man als ,,Eigenschaften von Mengen“ bezeichnen kann.® For-
dern wir nun also zusétzlich, dass ¢ priadikativ sein muss, dann erhalten wir im
zusammen mit den folgenden Axiomen ein NBG-System.

Durch das Komprehensionsaxiom und die Extensionalitdt wird nun der Zu-
sammenhang zwischen einer Aussage ¢(y) und der durch sie definierten Klasse
festgelegt. Dabei behauptet das Komprehensionsaxiom die Existenz mindestens
einer Klasse, deren Elemente die Aussage M(y) A ¢(y) erfiillen. Das Extensiona-
litdtsaxiom und die Gleichheitsaxiome sichern ab, dass es hochstens eine solche
Klasse gibt: irgend zwei Klassen, welche dieselben Elemente besitzen, sind gleich
im Sinne der Ersetzbarkeit in allen einschligigen Aussagen. Mit anderen Wor-
ten: es gibt nur genau eine solche Klasse.

Proposition 1.6.

Nz Vy (xey < My) AN oy)))

Beweis. Zu zeigen ist:

Jz Yy (y €x— My) Ad(y))
AVuYv (Vy (y €u <—>)im(y) ANoy) A Yy (y €v e My) Ao(y)))

Seien u und v beliebig. Es gelte weiterhin:
Yy (y €= My) Aoly)) A Vy (y € v My) A d(y)))
Dann folgt mit Formel 3.37: Yy ((y € u < M(y) Ad(y))A(y € v = M(y)Ap(y)))

Daraus erhalten wir mit Formel 3.31: Vy ((y € u < y € v)). Und mit Proposi-
tion 1.5 folgt nun w = v. Also haben wir gezeigt:

5Noch etwas formaler: in einer pridikativen Formel laufen alle Quantorenvariablen nur
iiber Mengen: V M(x) I M(y) ...


http://www.qedeq.org/current/doc/math/qedeq_logic_v1_de.pdf#allandpp
http://www.qedeq.org/current/doc/math/qedeq_logic_v1_de.pdf#andequi
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Vu Yo (Vy (y € u e My) Ao(y)) A Yy (y € v My) Ad(y)) — u=)

Zusammen mit Axiom 2 folgt nun die Behauptung. O

Ausgehend von 1.6 koénnen wir die Sprachsyntax erweitern und eine neue
abkiirzende Schreibweise einfithren.

Regel 1 (Klassenschreibweise). Fir jede Formel a(x) definieren wir den Ter-
mausdruck {z | a(x)} durch

y (y={z]al@)} AN Vzrey < M) Aa(z))

Die freien Variablen von {z | a(x)} sind die freien Variablen von a(x) vermin-
dert um {x}. Die gebunden Variablen entsprechen den gebunden Variablen von
a(z). Alle Ableitungsregln werden entsprechend erweitert.

Basierend auf: 1.6

Insbesondere miissen die Substitutionsregeln angepasst werden.® Es handelt sich
hierbei um eine konservative Erweiterung’.

Im Folgenden wird auf diese Schreibweise zuriickgegriffen.

Die neue Schreibweise kann auch in einfacher Weise in die alte Syntax transfor-
miert werden. Die Giiltigkeit der Ausgangspriadikate driickt sich fiir diese neue
Termart wie folgt aus.

Proposition 1.7.

ye{z | o(x)} <« My) A ¢y))

y = {z]|¢@)} < Vz(z€y z €

{z ] o)} = {z|P@)} < Vz(2€{
{o | ¢(x)} e {z | P(x)} < Yu Vo (

{z | ¥(@)}) — ue

{r]o@)}ey < Yu(u = {z|

+++ wenn diese Formel richtig gesetzt wiirde, sollte sie so aussehen:

ye{z [ o(x)} — My) Aod(y) (a)
y={z|o@)} «Vz (zey—ze{z]|o()}) (b)
{z | o)} ={z [ ¥(2)} < Vz (z €{z | o(z)} (c)
o ze{z [ Y()})

{z | o)} € {z [ (@)} < Vu Vo ((u={z]¢(x)} (d)

ANv={z[¢@)}) > uecv)
{z|o@)}eyovu(u={z]|d@)}—-ucy) (e)
Beweis. +++ fehlt noch. O

Durch sukzessives Anwenden des obigen Satzes kann also die neue Syntax in die
alte tiberfithrt werden.

Da durch die neue Schreibweise ein Term eindeutig festgelegt wird, muss
natiirlich auch das Folgende gelten.

6Weil nun ein Term auch gebundene Subjektvariablen besitzen kann. Gliicklicherweise ha-
ben wir das jedoch schon bei der Formulierung unserer Substitutionsregeln beriicksichtigt, so
dass wir nicht s tun miissen.

"Unter einer konservativen Erweiterung verstehen wir das Folgende: Sei £ eine Sprache
und £ eine Erweiterung von £. Da £ D £ gilt auch Formelg, D Formelg. Falls nun fiir jede
Formelmenge I' C Formelg und jede Formel o € Formelg gilt: I' Fos @ = TI' k¢ «, dann
heiit £ eine konservative Erweiterung von £.
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Proposition 1.8.

Jzz = {y| oy}
Aus der Aquivalenz von Aussageformen kann auf die Gleichheit der daraus ge-

bildeten Klassen geschlossen werden.

Proposition 1.9.

Vo (¢(z) < ¢(@) — {y| o)} = {v|v@)}

Die Umkehrung gilt jedoch nicht.

Jede Klasse lisst sich durch eine Aussage beschreiben, indem auf ihre Elemente
Bezug genommen wird.

Proposition 1.10.

v = {y|yea}

1.2 Spezielle Klassen

In diesem Abschnitt definieren wir die ersten Klassen.

Die Russellsche Klasse kann nun einfach definiert werden.

Definition 1.11 (Russell-Klasse).
Ru = {x |z ¢a}
Die Russellsche Klasse ist eine echte Klasse, d. h. sie ist keine Menge.

Proposition 1.12.

- (Ru)

Die Allklasse soll alles mogliche umfassen.

Definition 1.13 (Allklasse).

Y= {z|z = z}
Zumindest umfasst die Allklasse alle Mengen.
Proposition 1.14.

T = {z| M)}

Mitgliedschaft in der Allklasse ist daher gleichbedeutet mit der Eigenschaft eine
Menge zu sein.

Proposition 1.15.

z €Y — M(x)

Entsprechend definieren wir die leere Klasse. Spater werden wir feststellen, dass
die leere Klasse eine Menge ist. Dazu benétigen wir jedoch weitere Mengenaxio-
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me. Wir bezeichnen diese Klasse jedoch schon jetzt mit den Worten leere Menge.

Definition 1.16 (Leere Klasse).

0= {z|z # z}

Keine Klasse ist Element der leeren Klasse.

Proposition 1.17.
Vzz ¢

Eine Klasse, welche keine Elemente besitzt, ist die leere Klasse.
Proposition 1.18.

Vzzdax & xz =0



Kapitel 2

Boolesche Algebra der
Klassen

Die elementaren Operationen von Klassen und ihre Eigenschaften werden nun
beschrieben.

Eine Boolesche Algebra, oft auch Boolescher Verband genannt, ist eine spezielle
algebraische Struktur, die die Eigenschaften der logischen Operatoren und, oder,
nicht sowie die Eigenschaften der mengentheoretischen Verkniipfungen Durch-
schnitt, Vereinigung und Komplement abstrahiert.

Sie ist benannt nach G. Boole, der sie in der Mitte des 19. Jahrhunderts defi-
nierte, um algebraische Methoden in der Aussagenlogik anwenden zu konnen.

2.1 Boolesche Klassenoperatoren

Die Schreibweise bzw. Regel 1 ermdglicht die Definition von Klassenperatoren
mithilfe der logischen Verkniipfungen.

Die Vereinigung zweier Klassen besteht aus den Elementen beider Klassen.

Definition 2.1 (Vereinigung).

(xUy) == {z|(z€2 V z€y)}

Entsprechend wird der Durchschnitt zweier Klassen definiert, als Klasse die aus
den Elementen besteht, die in beiden Klassen vorhanden sind.

Definition 2.2 (Durchschnitt).

(zny) = {z]|(z€x AN z€y)}
Auch das Komplement einer Klasse kann einfach definiert werden.
Definition 2.3 (Komplement).

T = {z|z¢uz}

Ob eine Menge ein Element der Vereinigung zweier Klassen ist, kann natiirlich
auch direkt angegeben werden.

Proposition 2.4.

15
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z€(xUy) « (€2 V z€y)

Entsprechendes gilt fiir den Durchschnitt zweier Klassen.

Proposition 2.5.

ze€(xNy) < (z€x AN z€y)

Analoges gilt fiir das Komplement, dort muss jedoch die Mengeneigenschaft
explizit abgepriift werden.

Proposition 2.6.

ZET < (M(2) A z¢x)

Die vorherigen Sitze zeigen die Ubertragbarkeit der Eigenschaften der logischen
Verkniipfungen V, A und — auf die Klassenverkniipfungen U, N und ~. Deshalb
lassen sich die entsprechenden logischen Gesetzméssigkeiten direkt auf die Klas-
senverkniipfungen iibertragen.

Proposition 2.7.

(zUy) = (yUaz) (a)
(zNy) = (yNa) (b)
(zUy)Uz) = (zU(yU=2)) (c)
(ny)nz) = (@N(ynz)) (d)
x = (xUx) (e)

r = (xNzx) ()

T =z (8)

(zUy) = (@TNY) (h)

(zny) = (FUY) (i)
(zU(nz) = (zUy)N(zU2)) ()
(zN(yUz) = (@Ny)U(zn2)) (k)
0 =2 (1)

T =0 (m)

(xNY) =z (n)

(zn®) =0 (0)

(zUD) =T (p)

(@U) = 2 (@)

(zxUT) = U (r)

(xNz) = 0 (s)

2.2 Boolsche Algebra

Die Klassen bilden mit den Operatoren N, U, ~ und den Konstanten @, 2 eine
Boolesche Algebra.

++4++ Referenzen zu Kommutativitit, Assoziativitét, Distributivitit, Idempo-
tenz, etc.

2.3 Ordnung

Fiir eine boolsche Algebra kann eine kanonische Teilordnung definiert werden.
Daher kénnen wir auch fiir die Klassenalgebra eine Teilordnung festlegen.
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Wir definieren die Teilklassenrelation durch eine Schnittklassenbildung.

Definition 2.8 (Teilklasse).

x Cy e (zNy) =z

Sind z und y Mengen sagen wir auch: x ist Teilmenge von y.

Die iibliche Definition der Teilklassenrelation erhalten wir nun als Satz.

Proposition 2.9.
x Cy o Vz(z€x — z€y)

Diese Relation ist reflexiv, transitiv und antisymmetrisch, definiert also eine
Teilordnung mit () als kleinstem und U als grofitem Element.

Proposition 2.10.

z C zx (a)
(CyAnyCz) —axCz (b)
(@ CynyCua)oxz=y (c)
0 C = (d)
xr C U (e)
r C 0 -z =10 (f)
BV Czx —- 2= (g)
Eine Schnittklasse ist immer Teilmenge ihrer Ausgangsklassen.
Proposition 2.11.
(xny) C =z (a)
(zny) Cy (b)
Eine Vereinigungsklasse hat ihre Ausgangsklassen als Teilklassen.
Proposition 2.12.
z C (zUy) (a)
y C (zUy) (b)

Fiir zwei Teilklassen ist auch die Vereinigungsklasse Teilklasse. Und falls eine
Klasse Teilklasse von zwei Klassen ist, dann ist sie auch Teilklasse der Schnitt-
klasse. Beide Beziehungen sind auch umkehrbar.

Proposition 2.13.

(z
(z

NN
8
> >
N <
IN 1N
NP
!
N
IN
=

Bei Schnitt oder Vereinigung bleibt eine Teilklassenbeziehung erhalten.

Proposition 2.14.

NN
NN
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Bei der Bildung des Komplements kehrt sich die Teilklassenbeziehung um.

Proposition 2.15.

8
N

y oy <o

Fir das Komplement und die Teilklassenbeziehung gelten die folgenden
Aquivalenzen.

Proposition 2.16.

r Cy e (zny) =0 (a)
r Cy < (TUy) =T (b)
T Cy e (zny) =0 (c)
(zNy) € z <« o C (yUz) (d)

2.4 Einerklassen und Klassenpaare

Eine Klasse kann auch durch explizite Auflistung ihrer Elemente definiert wer-
den.

Insbesondere kann durch Angabe eines Elements die sogenannte Finerklasse
festgelegt werden. Wiederum mit Regel 1 kénnen wir die Sprachsyntax erweitern
und eine neue abkiirzende Schreibweise einfiihren.

Definition 2.17 (Einerklasse).
{z} = {y | M(z) — y = 2)}

Da der Ausdruck {z} fiir jegliches x definiert ist, kann er auch fiir den Fall, dass
x eine echte Klasse ist, gebildet werden. In diesem Fall erfiillen alle Mengen
y die Bedingung M(y) A (M(z) — y = z) und die Einerklasse ist mit der
Allklasse identisch. Das fithrt zu einem technisch einfacheren Umgang mit der
Einerklasse.'

Fiir Mengen enthélt die Einerklasse wie gewiinscht nur die Menge selbst.

Proposition 2.18.

Mx) — Vz (ze€f{a} < z = 2)

Fiir echte Mengen ist die Einerklasse mit der Allklasse identisch.

Proposition 2.19.

“Mz) — {2} = T

Einerklasse einer Menge zu sein ist dquivalent dazu Element seiner Einerklasse
Zu sein.

Proposition 2.20.

M(z) < ze{zr}

! Andere Autoren wie z. B. auch K. Godel, definieren {z} durch {y | y = =}.
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Nun kann einfach durch Vereinigung zweier Einerklassen das Paar zweier Klas-
sen definiert werden.

Definition 2.21 (Paar).
{z,y} = ({=z}U{y})

Ein Klassenpaar kann auch direkt, d. h. ohne Zuhilfenahme der Einerklassen
beschrieben werden.

Proposition 2.22.

{z,y} = {z (M=) A My)) — (z =2V 2z =y)}
Fiir Klassenpaare die aus Mengen gebildet werden kann die Eigenschaft Element

des Klassenpaares zu sein einfacher ausgedriickt werden.

Proposition 2.23.
M(z) A My)) — Vz(ze{r,y} « (z =2V 2z =y))
Falls bei der Klassenpaarbildung eine echte Klasse dabei ist, dann ist das resul-

tierende Klassenpaar mit der Allklasse identisch.

Proposition 2.24.

(=M(z) Vv -M(y)) — {z,y} =T

Wir notieren dass die Klassenpaarbildung kommutativ ist.

Proposition 2.25.

{z.y} = {y, 2}

Die Einerklasse ist ein Spezialfall des Klassenpaares.

Proposition 2.26.

{z} = {z,z}

Menge zu sein ist equivalent dazu Element eines Klassenpaares zu sein.

Proposition 2.27.
M(z) < =€y}
Fiir Mengen ist die Elementbeziehung equivalent zur Teilklassenbeziehung fiir

die zugehorige Einerklasse.

Proposition 2.28.

Mz) — (zey < = C {y})

Die Gleichheit von aus Mengen gebildeten Klassenpaaren ist wie erwartet.

Proposition 2.29.



20 KAPITEL 2. BOOLESCHE ALGEBRA DER KLASSEN

(M(z) A My) A Mu) A M) = ({z,yt = {u,0} — (@ =
Ay

)
u =v)V(x =v Ay = u))

2.5 Unendliche boolsche Operatoren

Es kénnen auch beliebige Schnittklassen und Vereinigungsklassen gebildet wer-
den. Dazu muss nur festgelegt werden, {iber welche Klassen jeweils geschnitten
bzw. vereinigt wird.

Fiir eine Klasse von Mengen wird ein Produkt so definiert, dass genau die Ele-
mente, die in allen Mengen enthalten sind, in dem Produkt liegen.

Definition 2.30 (Mengenprodukt).
Nz :={:IWes - z€y)}

Diese Funktion kann als Verallgemeinerung der Schnittklassenbildung angesehen
werden. Siehe auch Proposition 2.41.

Wir sagen auch, dass die Klasse x eine Mengenfamilie festlegt. Jedes Element
von z ist ein Mitglied der Familie.

Wie {iblich kénnen wir die Elementbeziehung zum Mengenprodukt wie folgt
beschreiben.

Proposition 2.31.

ze€Nx < (M=) ANVy (yex — z€y))

Fiir den Speziallfall z = () erhalten wir.

Proposition 2.32.
No =

Falls wir das Mengenprodukt einer nichtleeren Klasse bilden koénnen wir die
Mengenbedingung weglassen.

Proposition 2.33.

r# 0 - (ze€Nzx <« VWycs — z2€y))

Analog konnen wir die Mengensumme definieren. Genau die Elemente, die in
irgend einer der Mengen vorkommen, sollen in der Summe liegen.

Definition 2.34 (Mengensumme).
U z :={z|Fy(yex AN z€y)}

Die Zugehorigkeit zur Mengensumme kann wie folgt ausgedriickt werden.

Proposition 2.35.

zelJzr < Jyyex N z€y)

Hier kénnen wir die Mengenbedingung 9(z) weglassen.
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Fiir die leere Klasse erhalten wir.

Proposition 2.36.

Uo =
Die Teilklassenrelation verhélt sich zu Mengenprodukt und Mengensumme wie
folgt.

Proposition 2.37.

K ()

vy — Ny
y - Uz Uy (b)

NN
NN

Die Elementbeziehung induziert Teilklassenbeziehungen in der folgenden Weise.

Proposition 2.38.

C Uy (a)
y Cx

(b)
Die Vereinigungs- und Schnittklassenbildung passt zu Mengensumme und Men-

genprodukt wie nachfolgend beschrieben.

Proposition 2.39.

N(@Uy) = (N =N v (a)
U@uy) = (U xul v
U@ny) € UznU vy

——
SIGIE

Fiir den Fall einer nichtleeren Mengenfamile haben wir dieses.

Proposition 2.40.

Ve(z #0 - Nz < Ua)

Fiir Mengenpaare erhalten wir die erwarteten Ergebnisse.

Proposition 2.41.

M(x) A My)) — NA{z.y} = (zNy) (a)
A My) — UAfzy} = (zUy) (b)
Fiir Einermengen erhalten wir analoge Aussagen.

Proposition 2.42.

M(z) — (1 {=}
M(z) — U {=}

I
&
—
&
s

I
8
G
S—

2.6 Potenzklassenbildung

Nun kénnen wir einen wichtigen neuen Klassenoperator einfiihren.

Aus der Teilklassenrelation ldsst sich ein weiterer Klassenoperator gewinnen, die
Potenzklassenbildung.
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Definition 2.43 (Potenzklasse).
Plz) = {z]z C =}

Fiir diesen neuen Operator gelten die folgenden Aussagen.

Proposition 2.44.

z€P(x) « (M(z) A z C x) (a)
PBEY) =T (b)

BO) = {0} (c)

M(z) < =€ P(z) (d)

z Cy — Px) € Py (e)
(M(z) A P(x) € P) — = Sy (f)
B((zny) = (Plz) NP(y)) (2)
(P(2) UPB(y) S PB(zUy)) (h)

z C PBU 2) (i)

U B@) C = i)

Speziell fiir Potenzmengen gilt die folgende Aussage.

Proposition 2.45.

Mz) — = = U P@)

Spéter konnen wir die Mengenbedingung fallenlassen, da wir dann iiber weitere
Axiome verfiigen.



Kapitel 3

Mengen, Relationen und
Funktionen

In diesem Kapitel wird noch einmal genauer auf die Mengeneigenschaft einge-
gangen und es werden neue Axiome angegeben um die Existens von Mengen
abzusichern.

Um Relationen definieren zu kénnen, wird der Begriff des geordneten Klassen-
paares benotigt, der es ermoglicht das cartesische Produkt von Klassen zu defi-
nieren. Relationen sind Teilklassen von cartesischen Produkten und bilden eine
mit bestimmten Operationen eine universelle Algebra.

Spezielle Relationen sind die Aquivalenzrelationen, die einen etwas weiter ge-
fassten Gleichheitsbegriff ermoglichen. Funktionen sind ebenfalls spezielle Rela-
tionen, Das Fraenkelsche Ersetzungsaxiom garantiert das Mengen auf Mengen
abgebildet werden.

3.1 Mengen

Zur Darstellung der Booleschen Klassenalgebra wurden noch keine mengentheo-
retischen Axiome benotigt Im Folgenden werden weitere Axiome vorgestellt, die
Bedingungen dafiir angeben, wann eine Klasse eine Menge ist.

Die leere Klasse soll auch eine Menge sein.

Axiom 3 (Axiom der leeren Menge).

m(®)

Damit haben wir zum ersten Mal Kenntnis iiber die Existenz einer Menge.

Um die Mengeneigenschaft fiir Paare von Mengen zu erhalten, haben wir das
folgende Axiom.

Axiom 4 (Axiom der Paarmenge).

(M(x) A My)) — M{z,y})

Auch die Mengensumme einer Menge soll wieder eine Menge sein.
Axiom 5 (Summenmengenaxiom).
M(z) — MU =)

23
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Die Potenzklasse einer Menge soll auch wieder eine Menge sein.

Axiom 6 (Axiom der Potenzmenge).

M(z) — M(P(z))

Die Teilklasse einer Menge soll wieder eine Menge sein.

Axiom 7 (Teilmengenaxiom).

M(z) Ay S ) — My)

Die obigen Mengenaxiome ermdoglichen es uns Mengen zu konstruieren. Durch
das Axiom 3 haben wir eine erste Menge (). Durch die Anwendung von Axiom 6
erhalten wir die Menge {(}. Die erneute Bildung der Potenzmenge erzeugt die
Menge {0, {0}}. Durch wiederholtes Anwendung der Prozedur bekommen wir
eine beliebige Anzahl von Mengen.'

Weiterhin stellen wir fest, dass wir mit unseren bisherigen Axiomen nur die
Existenz von Mengen mit einer endlichen Elementanzahl nachweisen kénnen.
Diese englichen Mengen sind ,,sicher” in dem Sinne, dass sie nicht zu den Wi-
derspriichen fithren, wie sie in der uneingeschrinkten Mengenlehre Zermelos
auftreten,

Mit Hilfe der neuen Axiome kénnen weitere Folgerungen gezogen werden.

Proposition 3.1.

(=M(y) Ay € x) — —-M(x) (a)
~M(V) (b)

M(x) A My)) — M((zVy)) (c)
M(z) A My)) — M((=zNy)) (d)
M(x) — M({z}) (e)

M(x) — —-M(T) ()

z = U P(x) ()

M(z) < MU =) (h)

Ny =10 (i)

Us =9 )

z# 0 — MN ) (k)

3.2 Geordnetes Klassenpaar

Das Konzept eines geordneten Paars ist fiir die weitere Entwicklung unserer
Theorie wichtig. Es erm6glicht uns die Objekte anzuordnen. Bisher hingen un-
sere Objektzusammenfassungen nicht von der Reihenfolge der Sammlung ab.
Wir wollen nun aber auch nach der Zusammenfassung herausfinden kénnnen,
welches das erste Element und welches das zweite Element war.

Die Definition eines geordneten Paares (x,y) erfolgt nach N. Wiener (1914)
bzw. K. Kuratowski (1921).

Definition 3.2 (Geordnetes Paar).

(,y) = {{z} {z,y}}

1Dass die Mengen alle paarweise voneinander verschieden sind, ist leicht zu zeigen.
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Fiir geordnete Paare von Mengen spielt die Reihe der angegebenen Elemente
eine Rolle. Geordnete Paare sollten nur dann identisch sein, wenn ihre ersten
Elemente und ihre zweiten Elemente identisch sind.

Proposition 3.3.

M) A My) A M(u) A M) = (2,9) = (wv) = (2 = vy =)

Ein aus Mengen gebildetes geordnetes Paar ist auch eine Menge. Die Umkehrung
gilt auch.

Proposition 3.4.

M(z) A M(y)) < M((z,y))

Falls eine der Klassen keine Menge ist, dann ist das geordnete Paar mit der
Allklasse identisch.

Proposition 3.5.

(=M(z) V -M(y)) — (z,y) = T

Um iiber geordnete Paare sprechen zu kénnen benétigen wir ein neues Pradikat
»ist ein geordnetes Paar “.

Definition 3.6 (Eigenschaft geordnetes Paar).

isOrderedPair(z) — Ju Jvx = (u,v)

Wir betonen noch einmal, dass auch U ein geordnetes Paar ist. Aber da wir
meistens iiber Elemente von Klassen sprechen, haben wir nur mit Mengen zu
tun, die eventuell auch geordnete Paare sind.

3.3 Kartesisches Produkt

Fiir die geordenten Klassenpaare brauchen wir eine Metastruktur. Dafiir fassen
wir einfach geordete Paare in einer Klasse zusammen.

Das Kartesische Produkt?, auch Kreuzprodukt genannt, ist die Klasse aller ge-
ordneter Paare, deren Elemente aus den Ausgangsklassen stammen.

Definition 3.7 (Kartesisches Produkt).

(xxy) ={z|Fuvwexr ANvey AN z = (u,v))}

3.4 Relationen

Es ist wichtig Relationen zwischen mathematischen Objekten ausdriicken zu
konnen und sie auch als Objekte behandeln zu kénnen. Es stellt sich heraus, dass
wir keine neuen Objektarten benttigen. Unsere bisherigen Strukturen reichen
aus.

Num koénnen wir den Begriff der Relation auch innerhalb unserer Mengenlehre
definieren.

2Kartesisch oder kartesianisch nach der lateinischen Namensform Cartesius des Philoso-
phen und Mathematikers R. Descartes.
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Definition 3.8 (Relation).

Rel(x) — Yy (y € x — isOrderedPair(y))

Ein paar Aussagen iiber Relationen.

Proposition 3.9.

Rel(D) (a)

Rel((V x V) (b)

(Rel(z) A Relly) — Rel((zNy)) (0
(Rel(z) A Rel(y)) — Rel((zUy)) (d)

Wie geben nun eine allgemeine Definitin des Begriffs Definitionsbereich an.

Definition 3.10 (Definitionsbereich).

Dom(z) := {y | Iz (y,2) € z}

Analog zu dem Definitionsbereich legen wir den Wertebereich einer Klasse fest.

Definition 3.11 (Wertebereich).

Rng(z) = {y | Iz (2,9) € z}

3.5 Relationenalgebra

MISSING! OTHER: +++

3.6 Aquivalenzrelationen

MISSING! OTHER: +++

3.7 Abbildungen und Funktionen

MISSING! OTHER: +++

Eine Funktion ist einfach eine spezielle Art von Relation.

Definition 3.12 (Funktion).

Funct(z) = Rel(z) A Vy (y € Dom(x) — Tz (y,2) € x)

Falls der Definitionsbereich einer Funktion eine Menge ist, dann sollte auch ihr
Wertebereich eine Menge sein.

Axiom 8 (Fraenkelsches Ersetzungsaxiom).

(unct(f) A M(Dom(f))) — M(Rng(f))



Kapitel 4

Natiirliche Zahlen

MISSING! OTHER: +++

4.1 Fundierung und Unendlichkeit

MISSING! OTHER: +-++

Mengen x sollten sich nicht selbst als Element enthalten oder ein Element besit-
zen das wiederum x als Element hat. Um diese und andere Enthaltenseinszirkel
auszuschlielen stellen wir das filgende Axiom vor.

Axiom 9 (Fundierungsaxiom).
x# 0 — Jylyex A (ynz) = 0)

Dieses Axiom heifit auch Regularitédtsaxiom.

Eine naheliegende Klassenerweiterung ist die Bildung der Vereinigungsmenge
mit der Einerklasse.

Definition 4.1 (Nachfolger).
¥ = (zU{z})

Weil z ¢ x fiigt die Nachfolgerfunktion der orginalen Klasse genau ein Element
hinzu.

Wir wollen eine Menge mit unendlich vielen Elementen haben. So fordern wir
einfach ihre Existenz.

Axiom 10 (Unendlichkeits).

oz M(z) ANDex AVy(yezr — ¢y €x))

4.2 Definition und Grundeigenschaften

MISSING! OTHER: +++

27
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4.3 Induktion

MISSING! OTHER: +++

4.4 Folgen und normale Funktionen

MISSING! OTHER: +++

4.5 Rekursion

MISSING! OTHER: +++



Kapitel 5
Auswahlaxiom

+++

5.1 Wohlordnungen

+++

Nun kommen wir zu dem bekannten Auswahlaxiom. Wir formulieres es fiir Re-
lationen.

Axiom 11 (Auswahlaxiom).

Rel(z) — Ty Funct(y) — (y € =z A Dom(z) = Dom(y)))

5.2 Anwendungen des Auswahlaxioms

MISSING! OTHER:

29
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Kapitel 6

Kontinuum

31
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