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Summary

The project Hilbert II deals with the formal presentation and documentation
of mathematical knowledge. For this reason Hilbert II provides a program suite
to accomplish that tasks. The concrete documentation of mathematical basics
is also a purpose of this project. For further informations about the Hilbert II
project see under http://www.qedeq.org/index_de.html.

This document describes the logical axoims and the rules and meta rules that
are used to derive new propositions.

The presentation is axiomatic and in a formal form. A formal calculus is given
that enables us to derive all true formulas. Additional derived rules, definitions,
abbreviations and syntax extensions basically correspond with the mathematical
practice.

This document is also written in a formal language, the original text is a XML
file with a syntax defined by the XSD http://www.qedeq.org/current/xml/
qedeq.xsd.

This document is work in progress and is updated from time to time. Especially
at the locations marked by ”+++“ additions or changes will take place.
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Foreword

The whole mathematical universium can be unfolded by set–theoretic means.
Beside the set–theoretic axioms only logical axioms and rules are required. These
elementary basics are sufficient to define the most complex mathematical struc-
tures and enable us to prove propositions for those structures. This approach
can be fully formalized and can be reduced to simple manipulations of character
strings. The semantical interpretation of these character strings represent the
mathematical universum.

It is more than convenient to introduce abbreviations and use further derivation
rules. But these comforts could be eliminated and replaced by the basic terms
at any time1.

This project has its source in a childhood dream to undertake a formalization of
mathematics. In the meantime the technical possibilities are highly developed
so that a realisation seems within reach.

Special thanks go to the professors W. Kerby and V. Günther of the university
of Hamburg for their inspiring lectures about logic and axiomatic set theory.
Without these important impulses this project would not exist.

I am deeply grateful to my wife Gesine Dräger and our son Lennart for their
support and patience.

Hamburg, January, 2007
Michael Meyling

1At least this is theoretically possible. This transformation is not in each case practically
realisable due to restrictions in time and space. For example it is not possible to write down
the natural number 1, 000, 000, 000 completely in set notation.
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Introduction

At the beginning we quote D. Hilbert from the lecture ”The Logical Basis of
Mathematics“, September 19222.

”The fundamental idea of my proof theory is the following:

All the propositions that constitute in mathematics are converted
into formulas, so that mathematics proper becomes all inventory of
formulas. These differ from the ordinary formulas of mathematics
only in that, besides the ordinary signs, the logical signs especially

”implies“ (→) and for ”not“ ( ¯ ) occur in them. Certain formulas,
which serve as building blocks for the formal edifice of mathematics,
are called axioms. A proof is an array that must be given as such
to our perceptual intuition of it of inferences according to the schema

A

A→ B

B

where each of the premises, that is, the formulae, A und A → B
in the array either is an axiom or directly from an axiom by sub-
stitution, or else coincides with the end formula B of an inference
occurring earlier in the proof or results from it by substitution. A
formula is said to be provable if it is either an axiom or the end
formula of a proof.“

In the 1928 published book Grundzüge der theoretischen Logik (Principles of
Theoretical Logic) D. Hilbert and W. Ackermann formalized propositional cal-
culus in a way that build the basis for the logical system used here. 1959
P. S. Novikov specified a refined axiom and rule system for predicate calcu-
lus.

In this text we present a first order predicate calculus with identity and functors
that is the starting basis for the development of the mathematical theory. Only
the results without any proofs and in short form are given in the following.

2Lecture given at the Deutsche Naturforscher-Gesellschaft, September 1922.
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Chapter 1

Language

At the beginning there is logic. Logic is the analysis of methods of reasoning.
It helps to derive new propositions from already given ones. Logic is universal
applicable.

The logical foundation of Hilbert II will be introduced here. The language of
our calculus base on the formalisations of D. Hilbert, W. Ackermann, P. Bernays
and P. S. Novikov. New rules can be derived from the herein presented. Only
these meta rules lead to a smooth flowing logical argumentation.

1.1 Terms and Formulas

We use the logical symbols L = { ‘¬’, ‘∨’, ‘∧’, ‘↔’, ‘→’, ‘∀’, ‘∃’ }, the predi-
cate constants C = {cki | i, k ∈ ω}, the function variables1 F = {fk

i | i, k ∈
ω ∧ k > 0}, the function constants2 H = {hk

i | i, k ∈ ω}, the subject variables
V = {vi | i ∈ ω}, as well as predicate variables P = {pk

i | i, k ∈ ω}.3 For
the arity or rank of an operator we take the upper index. The set of predicate
variables with zero arity is also called set of proposition variables or sentence
letters: A := {p0

i | i ∈ ω}. For subject variables we write short hand certain lower
letters: v1 = ‘u’, v2 = ‘v’, v3 = ‘w’, v4 = ‘x’, v5 = ‘y’, v5 = ‘z’. Furthermore we
use the following short notations: for the predicate variables pn

1 = ‘φ’ und pn
2 =

‘ψ’, where the appropriate arity n is calculated by counting the subsequent pa-
rameters, for the proposition variables a1 = ‘A’, a2 = ‘B’ and a3 = ‘C’, for the
function variables: fn

1 = ‘f ’ und fn
2 = ‘g’, where again the appropriate arity

n is is calculated by counting the subsequent parameters. All binary proposi-
tional operators are written in infix notation. Parentheses surrounding groups
of operands and operators are necessary to indicate the intended order in which
operations are to be performed. E. g. for the operator ∧ with the parameters A
and B we write (A ∧B).

In the absence of parentheses the usual precedence rules determine the order of
operations. Especially outermost parentheses are omitted.

1Function variables are used for a shorter notation. For example writing an identity propo-
sition x = y → f(x) = f(y). Also this introduction prepares for the syntax extension for
functional classes.

2Function constants are also introduced for convenience and are used for direct defined
class functions. For example to define building of the power class operator, the union and in-
tersection operator and the successor function. All these function constants can be interpreted
as abbreviations.

3By ω we understand the natural numbers including zero. All involved symbols are pairwise

disjoint. Therefore we can conclude for example: fk
i = fk′

i′ → (k = k′ ∧ i = i′) and hk
i 6= vj .
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12 CHAPTER 1. LANGUAGE

The operators have the order of precedence described below (starting with the
highest).

¬,∀,∃
∧
∨

→,↔

The term term is defined recursively as follows:

1. Every subject variable is a term.

2. Let i, k ∈ ω and let t1, . . . , tk be terms. Then is hk
i (t1, . . . , tk) a term and

if k > 0, so fk
i (t1, . . . , tk) is a term too.

Therefore all zero arity function constants {h0
i | i,∈ ω} are terms. They are

called individual constants.4

We define a formula and the relations free and bound subject variable recursivly
as follows:

1. Every proposition variable is a formula. Such formulas contain no free or
bound subject variables.

2. Is pk a predicate variable with arity k and ck a predicate constant
with arity k and let t1, t2, . . . , tk be terms, then pk(t1, t2, . . . tk) and
ck(t1, t2, . . . , tk) are formulas. All subject variables that occur at least
in one of t1, t2, . . . , tk are free subject variables. Bound subject variables
doesn’t occur.5

3. Let α, β Formeln be formulas in which no subject variables occur bound
in one formula and free in the other. Then also ¬α, (α ∧ β), (α ∨ β),
(α → β) and (α ↔ β) are also formulas. Subject variables which occur
free (respectively bound) in α or β stay free (respectively bound).

4. If in the formula α the subject variable x1 occurs not bound6, than also
∀x1 α and ∃x1 α are formulas. The symbol ∀ is called universal quantifier
and ∃ as existential quantifier .

Except for x1 all free subject variables of α stay free. All bound subject
variables are still bound and additionally x1 is bound too.

All formulas that are only built by usage of 1. and 3. are called formulas of the
propositional calculus.

For each formula α the following proposition holds: the set of free subject vari-
ables is disjoint with the set of bound subject variables.

If a formula has the form ∀x1 α respectively ∃x1 α then the formula α is called
the scope of the quantifier ∀ respectively ∃.
All formulas that are used to build up a formula by 1. to 4. are called part
formulas.

4In an analogous manner subject variables might be defined as function variables of zero
arity. Because subject variables play an importent role they have their own notation.

5This second item includes the first one, which is only listed for clarity.
6This means that x1 is free in the formula or doesn’t occur at all.



Chapter 2

Axioms and Rules of
Inference

We now state the system of axioms for the predicate calculus and present the
rules for obtaining new formulas from them.

2.1 Axioms

The logical operators of propositional calculus ‘¬’, ‘∨’, ‘∧’, ‘↔’ und ‘→’ combine
arbitrary propositions to new propositions. A proposition is a statement that
affirms or denies something and is either ”true“ or ”false“ (but not both).1

The new ingredient of predicate calculus is quantification.

The binary operator ‘∨’ (logical disjunction) combines the two propositions α
and β into the new proposition α ∨ β. It results in true iff at least one of its
operands is true.

The unary operator ‘¬’ (logical negation) changes the truth value of a propo-
sition α. ¬α has a value of true when its operand is false and a value of false
when its operand is true.

The logical implication (if ) the, logical conjunction (and) and the logical equiv-
alence (biconditional) are defined as abbreviations. 2

The logical implication (‘if’) could be defined as follows.

Definition 2.1 (Implication).

α→ β :↔ ¬α ∨ β

The logical conjunction (‘and’) could be defined with de Morgan.

Definition 2.2 (Conjunction).

α ∧ β :↔ ¬(¬α ∨ ¬β)

The logical equivalence (‘iff’) is defined as usual.

Definition 2.3 (Equivalence).

α ∧ β :↔ (α → β) ∧ (β → α)
1Later on we will define the symbols > and ⊥ as truth values.
2Actually the symbols ∧,→,↔ are defined later on and are a syntax extension. But for

convenience these symbols are already part of the logical language.
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14 CHAPTER 2. AXIOMS AND RULES OF INFERENCE

Now we come to the first axiom of propositional calculus. This axiom enables
us to get rid of an unnecessary disjunction.

Axiom 1 (Disjunction Idempotence).

(A ∨ A) → A

If a proposition is true, any alternative may be added without making it false.

Axiom 2 (Axiom of Weakening).

A → (A ∨ B)

The disjunction should be commutative.

Axiom 3 (Commutativity of the Disjunction).

(A ∨ B) → (B ∨ A)

An disjunction could be added at both side of an implication.

Axiom 4 (Disunctive Addition).

(A → B) → ((C ∨ A) → (C ∨ B))

If something is true for all x, it is true for any specific y.

Axiom 5 (Universal Instantiation).

∀x φ(x) → φ(y)

If a predicate holds for some particular y, then there is an x for which the
predicate holds.

Axiom 6 (Existential Generalization).

φ(y) → ∃x φ(x)

2.2 Rules of Inference

The following rules of inference enable us to obtain new true formulas from the
axioms that are assumed to be true. From these new formulas we derive further
formulas. So we can successively extend the set of true formulas.

Rule 1 (Modus Ponens). If both formulas α and α→ β are true, then we can
conclude that β is true as well.

Rule 2 (Replace Free Subject Variable). We start with a true formula. A free
subject variable may be replaced by an arbitrary term, provided that the sub-
stituted term contains no subject variable that have a bound occurrence in the
original formula. All occurrences of the free variable must be simultaneously
replaced.
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The prohibition to use subject variables within the term that occur bound in
the original formula has two reasons. First it ensures that the resulting formula
is well-formed. Secondly it preserves the validity of the formula. Let us look at
the following derivation.

∀x ∃y φ(x, y) → ∃y φ(z, y) with axiom 5
∀x ∃y φ(x, y) → ∃y φ(y, y) forbidden replacement: z in y, despite y is

already bound
∀x ∃y x 6= y → ∃y 6= y replace 6= for φ

This last proposition is not valid in many models.

Rule 3 (Rename Bound Subject Variable). We may replace a bound subject
variable occurring in a formula by any other subject variable, provided that the
new variable occurs not free in the original formula. If the variable to be replaced
occurs in more than one scope, then the replacement need be made in one scope
only.

Rule 4 (Replace Predicate Variable). Let α be a true formula that contains
a predicate variable p of arity n, let x1, . . . , xn be subject variables and let
β(x1, . . . , xn) be a formula where x1, . . . , xn are not bound. The formula
β(x1, . . . , xn) must not contain all x1, . . . , xn as free subject variables. Fur-
thermore it can also have other subject variables either free or bound.

If the following conditions are fulfilled, then a replacement of all occurrences of
p(t1, . . . , tn) each with appropriate terms t1, . . . , tn in α by β(t1, . . . , tn) results
in another true formula.

• the free variables of β(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of p(t1, . . . , tn) in α contains no bound variable of
β(x1, . . . , xn)

• the result of the substitution is a well-formed formula

See III §5 in [3].

The prohibition to use additional subject variables within the replacement for-
mula that occur bound in the original formula assurs that the resulting formula
is well-formed. Furthermore it preserves the validity of the formla. Take a look
at the following derivation.

φ(x) → ∃y φ(y) with axiom 6
(∃y y = y) ∧ φ(x) → ∃y φ(y)
∃y (y = y ∧ φ(x)) → ∃y φ(y)
∃y (y = y ∧ x 6= y) → ∃y y 6= y forbidden replacment: φ(x) by x 6= y,

despite y is already bound
∃y x 6= y → ∃y y 6= y

The last proposition is not valid in many models.

Analogous to rule 4 we can replace function variables too.

Rule 5 (Replace Function Variable). Let α be an already proven formula that
contains a function variable σ of arity n, let x1, . . . , xn be subject variables
and let τ(x1, . . . , xn) be an arbitrary term where x1, . . . , xn are not bound. The
term τ(x1, . . . , xn) must not contain all x1, . . . , xn. as free subject variables.
Furhermore it can also have other subject variables either free or bound.

If the following conditions are fulfilled we can obtain a new true formula by
replacing each occurrence of σ(t1, . . . , tn) with appropriate terms t1, . . . , tn in
α by τ(t1, . . . , tn).



16 CHAPTER 2. AXIOMS AND RULES OF INFERENCE

• the free variables of τ(x1, . . . , xn) without x1, . . . , xn do not occur as
bound variables in α

• each occurrence of σ(x1, . . . , xn) in α contains no bound variable of
τ(x1, . . . , xn)

• the result of the substitution is a well-formed formula

Rule 6 (Universal Quantifier Introduction). If α → β(x1) is a true formula
and α doesn’t contain the subject variable x1, then α→ (∀x1 (β(x1))) is a true
formula too.

Rule 7 (Existential Quantifier Introduction). If α(x1) → β is already proved
to be true and β doesn’t contain the subjekt variable x1, then (∃x1 α(x1)) → β
is also a true formula.

The usage and elimination of abbreviations and constants is also an inference
rule. In many texts about mathematical logic these rules are not explicitly stated
and this text is no exception. But in the exact QEDEQ format corresponding
rules exist.



Chapter 3

Derived Propositions

+++ Still missing.

3.1 Propositional Calculus

MISSING! OTHER: Aus den logischen Axiomen und Regeln von Kapitel 2 lassen
sich wichtige elementare Sätze ableiten.

Definition 3.1. Die Prädikatskonstanten > für true oder wahr und ⊥ für false
oder falsch werden wie folgt definiert:

> ⇔ A ∨ ¬A (3.1)
⊥ ⇔ ¬> (3.2)

Die folgenden Formeln lassen sich beweisen.

17



18 CHAPTER 3. DERIVED PROPOSITIONS

Theorem 3.2.

> (3.3)
¬⊥ (3.4)

A → A (3.5)
A ↔ A (3.6)

A ∨B ↔ B ∨A (3.7)
A ∧B ↔ B ∧A (3.8)

(A↔ B) ↔ (B ↔ A) (3.9)
A ∨ (B ∨ C) ↔ (A ∨B) ∨ C (3.10)
A ∧ (B ∧ C) ↔ (A ∧B) ∧ C (3.11)

A ↔ A ∨A (3.12)
A ↔ A ∧A (3.13)
A ↔ ¬¬A (3.14)

(A→ B) ↔ (¬B → ¬A) (3.15)
(A→ (B → C)) ↔ (B → (A→ C)) (3.16)

¬(A ∨B) ↔ ¬A ∧ ¬B (3.17)
¬(A ∧B) ↔ ¬A ∨ ¬B (3.18)

A ∨ (B ∧ C) ↔ (A ∨B) ∧ (A ∨ C) (3.19)
A ∧ (B ∨ C) ↔ (A ∧B) ∨ (A ∧ C) (3.20)

A ∧ > ↔ A (3.21)
A ∧ ⊥ ↔ ⊥ (3.22)
A ∨ > ↔ > (3.23)
A ∨ ⊥ ↔ A (3.24)
A ∨ ¬A ↔ > (3.25)
A ∧ ¬A ↔ ⊥ (3.26)

(> → A) ↔ A (3.27)
(⊥ → A) ↔ > (3.28)

(A→ B) ∧ (B → C) → A→ C (3.29)
(A↔ B) ∧ (B ↔ C) → A↔ C (3.30)
((A ∧B) ↔ (A ∧ C)) ↔ (A→ (B ↔ C)) (3.31)

3.2 Predicate Calculus

MISSING! OTHER: Aus den logischen Axiomen und Regeln von Kapitel 2 lassen
sich auch für die Prädikatenlogik elementare Sätze ableiten.
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Theorem 3.3.

∀x (φ(x) → ψ(x)) → ∀x (φ(x)) → ∀x (ψ(x)) (3.32)
∀x (φ(x) → ψ(x)) → ∃x (φ(x)) → ∃x (ψ(x)) (3.33)
∃x (φ(x) ∧ ψ(x)) → ∃x (φ(x)) ∧ ∃x (ψ(x)) (3.34)

∀x (ψ(x)) ∨ ∀x (ψ(x)) → ∀x (φ(x) ∨ ψ(x)) (3.35)
∃x (φ(x) ∨ ψ(x))) ↔ ∃x (φ(x)) ∨ ∃x (ψ(x)) (3.36)
∀x (φ(x) ∧ ψ(x))) ↔ ∀x (φ(x)) ∧ ∀x (ψ(x)) (3.37)
∀x ∀y (φ(x, y)) ↔ ∀y ∀x (φ(x, y)) (3.38)
∃x ∃y (φ(x, y)) ↔ ∃y ∃x (φ(x, y)) (3.39)
∀x (φ(x) → A) ↔ (∀x (φ(x)) → A) (3.40)
∀x (A→ φ(x)) ↔ (A→ ∀x (φ(x))) (3.41)
∀x (φ(x) ∧A) ↔ ∀x (φ(x)) ∧A (3.42)
∀x (φ(x) ∨A) ↔ (∀x (φ(x)) ∨A) (3.43)
∀x (φ(x) ↔ A) ↔ (∀x (φ(x)) ↔ A) (3.44)

+++ ergänzen

3.3 Derived Rules

MISSING! OTHER: Aus den logischen Grundlagen lassen sich logische Sätze
und Metaregeln ableiten, die eine bequemere Argumentation ermöglichen. Erst
mit diesem Regelwerk und zusätzlichen Definitionen und Abkürzungen wird
die restliche Mathematik entwickelt. Dabei wird stets nur eine konservative Er-
weiterung der bisherigen Syntax vorgenommen. D. h. in dem erweiterten System
lassen sich keine Formeln ableiten, die in der alten Syntax formuliert, aber dort
nicht ableitbar sind. Im Folgenden werden solche Erweiterungen vorgestellt.

Rule 8 (Ersetzung durch logisch äquivalente Formeln). Sei die Aussage α↔ β
bereits bewiesen. Wird dann aus der Formel δ eine neue Formel γ dadurch
gewonnen, dass ein beliebiges Vorkommen von α durch β ersetzt1 wird und be-
sitzt γ zumindest die freien Variablen (+++ unklar!) von δ, dann gilt δ ↔ γ.

Rule 9 (Allgemeine Assoziativität). Falls ein zweistelliger Operator das As-
soziativitätsgesetz erfüllt, so erfüllt er auch das allgemeine Assoziativitätsgesetz.
Dem Operator kann dann eine beliebige Stellenanzahl größer eins zugeschrieben
werden. So wird beispielsweise anstelle für (a+ b) + (c+ d) einfach a+ b+ c+ d
geschrieben.2

Rule 10 (Allgemeine Kommutativität). Falls ein Operator das allgemeine As-
soziativitätsgesetz erfüllt und kommutativ ist, so sind alle Permutationen von
Parameterreihenfolgen einander gleich oder äquivalent.3 So gilt beispielsweise
a+ b+ c+ d = c+ a+ d+ b.

Definition 3.4 (Ableitbarkeit). Eine Formel β heißt aus der Formel α ableit-
bar, wenn sich β mit Hilfe aller Regeln des Prädikatenkalküls und der um α
vermehrten Gesamtheit aller wahren Formeln des Prädikatenkalküls herleitbar
und α→ β eine Formel ist. Dabei dürfen die beiden Quantifizierungsregeln, die
Einsetzungsregel für Prädikatenvariable und die Umbenennungsregel für freie

1Bei dieser Ersetzung kann es erforderlich sein, dass gebundene Variablen von β umbenannt
werden müssen, damit sich wieder eine Formel ergibt.

2Der n-stellig Operator wird mit einer bestimmten Klammerung definiert, jede andere
Klammerreihenfolge liefert jedoch dasselbe Ergebnis.

3Je nachdem ob es sich um einen Termoperator oder einen Formeloperator handelt.
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Subjektvariable nur auf solche Variablen angewendet werden, die in der Formel
α nicht auftreten.

Schreibweise: α ` β.

Die Ableitbarkeit einer Formel β aus der Formel α ist streng zu unterscheiden
von der Ableitbarkeit einer wahren Formel aus den Axiomen des Kalküls, denn
im zweiten Fall stehen mehr Ableitungsregeln zur Verfügung. Falls beispielsweise
die Formel A als Axiom aufgenommen wird, so ist die Formel A→ B herleitbar.
Hingegen läßt sich aus A nicht B ableiten.

Rule 11 (Deduktionstheorem). Wenn eine Formel β aus einer Formel α ableit-
bar ist, so ist die Formel α→ β im Prädikatenkalkül herleitbar.



Chapter 4

Identy

MISSING! OTHER: +++ Fehlt noch

4.1 Identy Axioms

MISSING! OTHER: Es wird eine zweistellige Funktionskonstante festgelegt,
welche in der Interpretation die Identität von Subjekten ausdrücken soll.

Definition 4.1 (Gleichheit).

x = y ⇔ c21(x, y)

Dazu werden zwei weitere Axiome, auch Gleichheitsaxiome genannt, formuliert.

Axiom 7 (Reflexivität der Gleichheit).

x = x

Axiom 8 (Leibnizsche Ersetzbarkeit).

x = y → (φ(x) → φ(y))

Theorem 4.2 (Symmetrie der Gleichheit).

x = y ↔ y = x (4.1)

Theorem 4.3 (Transitivität der Gleichheit).

x = y ∧ y = z → x = z (4.2)

Theorem 4.4.
x = y → (φ(x) ↔ φ(y)) (4.3)

Theorem 4.5.
x = y → f(x) = f(y) (4.4)

4.2 ++ TODO Quantifiers

MISSING! OTHER: Bei der folgenden Definition muss die für ψ(x) eingesetzte
Formel ”erkennen lassen“, über welche Subjektvariable quantifiziert wird. Das
ist in der Regel darüber zu entscheiden, welche freie Subjektvariable als erstes
in der Formel vorkommt.1 In der exakten Syntax des Qedeq-Formats2 ist die
Subjektvariable immer angegeben.

1Beispielsweise ist in der folgenden Formel erkennbar, dass die zweite Quantifikation über
die Subjektvariable m läuft: ∀ n ∈ N ∀ m ∈ n m < n.

2Siehe unter http://www.qedeq.org/0_01_05/projektbeschreibung.pdf.
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Definition 4.6 (Eingeschränkter Allquantor).

∀ ψ(x) (φ(x)) ⇔ ∀ x (ψ(x) → φ(x))

Dazu passt die folgende Definition für den eingeschränkten Existenzquantor.3

Definition 4.7 (Eingeschränkter Existenzquantor).

∃ ψ(x) (φ(x)) ⇔ ∃ x (ψ(x) ∧ φ(x))

Für die Existenz genau eines Individuums mit einer bestimmten Eigenschaft
wird nun ein gesonderter Quantor eingeführt.

Definition 4.8 (Eingeschränkter Existenzquantor für genau ein Individuum).

∃! ψ(x) (φ(x)) ⇔ ∃ ψ(x) (φ(x) ∧ ∀ ψ(y) (φ(y) → x = y))

Durch die Gültigkeit von ∃! ψ(x)(φ(x)) kann daher eine Subjektkonstante
definiert werden, wenn φ(x) und ψ(x) durch Ausdrücke ersetzt werden, die
ausser x keine freien Variablen, keine Prädikatsvariablen und keine Funk-
tionsvariablen mehr enthält.

Rule 12 (Termdefinition durch Formel). Falls die Formel ∃!x α(x) gilt, dann
kann die Termsyntax durch D(x, α(x)) erweitert werden. Die Formel alpha(x)
möge die Variable y nicht enthalten und β(y) sei eine Formel, welche die Vari-
able x nicht enthält. Dann wird durch β(D(x, α(x))) eine Formel definiert durch
β(y)∧∃!x (α(x)∧x = y). Auch in der abkürzenden Schreibweise gilt die Subjek-
tvariable x als gebunden, die Subjektvariable y ist mit den obigen Einschränkun-
gen frei wählbar und wird in der Abkürzung nicht weiter beachtet. Veränderun-
gen von α in eine andere Formel α′, die eventuell erforderlich sind, damit keine
Variablenkollisionen mit Variablen aus β entstehen, müssen jedoch auch in der
Abkürzung durchgeführt werden. Alle Termbildungsregeln werden entsprechend
erweitert. Der Ausdruck ist auch ersetzbar durch ∃!y (β(y) ∧ α(y) oder durch
β(y) ∧ α(y).

Für eingeschränkte Quantoren gelten analog zu tsprechende Formeln.
+++

3Passend, da ¬∀ ψ(x) (φ(x)) ↔ ∃ x ¬(ψ(x) → φ(x)) ↔ ∃ x (ψ(x) ∧ ¬φ(x)) ↔
∃ ψ(x) (¬φ(x)).
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