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Abstract

This module notates the original axioms of the Whitehead-Russell calculus, the so called ‘primitive
propositions’. These five primitive propositions could be deduced by our four axioms.
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At first we show a little proposition to demonstrate the basic proof methods of propositional calculus:
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Theorem 0.1 (lem1).

P - (Q vV P)
Proof.
1 P —-Q) — (AV P — (AV Q) add axiom axiom4
2 B—-Q) — (AVv B) - (AV Q) replace P by B in 1
3 (B — (Q V P)) — ((A V B) — (A V (Q V P))) replace Q by @ V P in 2
4 ((P vV Q) — (Q \Y P)) — ((A V (P vV Q)) — replace B by P V Q in 3
4V (@QV P))
5 (PVvaQ — (QVP) - (PVv (PVQ)— replace A by =P in 4
PV Qv P)
6 ((P V Q) — (Q V P)) — ((P — (P Vv Q)) — reverse abbreviation impl in 5 at oc-
(=P v (Q v P)) I
7 (PVvQ) — (Q@VP)—({(P—-(PVQ) — (P — reverse abbreviation impl in 6 at oc-
Q Vv P)) coronce 1
8 (PV Q) — (QV P add axiom axiom3
9 (P — (P V Q)) — (P — (Q v P)) MP with 8, 7
10 P — (P V Q) add axiom axiom2
11 P — (Q V P) MP with 10, 9

This is the first primitive proposition, its equal to our first axiom:

Theorem 0.2 (prinl).

Proof.

(PVv P — P

(PVv P) - P

add axiom axioml

O

Now comes the second primitive proposition. It looks simular to our second axiom, but we have to use

our first proposition to prove it:

Theorem 0.3 (prin2).

Proof.
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The third primitive proposition:

Theorem 0.4 (prin3).

Q — (PV Q)
add sentence lem1
replace Q by A in 1
replace P by Q in 2
replace A by P in 3
O
PV Q) — (QV P)
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(P Vv (QV A) = (Q@V(PVA)

(PVQ — (@QVP)
The fourth primitive proposition was proved with the other primitve propositions by P. Bernays. Here

comes the sledgehammer:
Theorem 0.5 (prin4).

Proof.
Proof.
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The fifth primitive proposition is our fourth axiom:

Theorem 0.6 (prin5).

(P =@ — (AVv P) = (AV Q)

Proof.
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(P — Q) — ((A \Y P) — (A \Y Q)) add axiom axiom4


propaxiom_1.00.00_1.00.00.pdf#rule2
propaxiom_1.00.00_1.00.00.pdf#axiom4

