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Theorem 0.1 (hilb18).
¬(P ∧ Q) → (¬P ∨ ¬Q)

Proof.

1 ¬¬P → P add sentence hilb6

2 ¬¬Q → Q replace P by Q in 1

3 ¬¬(¬P ∨ ¬Q) → (¬P ∨ ¬Q) replace Q by ¬P ∨ ¬Q in 2

4 ¬(P ∧ Q) → (¬P ∨ ¬Q) reverse abbreviation and in 3 at oc-

curence 1

The reverse of a negation of a conjunction:

Theorem 0.2 (hilb19).
(¬P ∨ ¬Q) → ¬(P ∧ Q)

Proof.

1 P → ¬¬P add sentence hilb5

2 Q → ¬¬Q replace P by Q in 1

3 (¬P ∨ ¬Q) → ¬¬(¬P ∨ ¬Q) replace Q by ¬P ∨ ¬Q in 2

4 (¬P ∨ ¬Q) → ¬(P ∧ Q) reverse abbreviation and in 3 at oc-

curence 1

Negation of a disjunction:

Theorem 0.3 (hilb20).
¬(P ∨ Q) → (¬P ∧ ¬Q)

Proof.

1 P → P add sentence hilb2

2 Q → Q replace P by Q in 1

3 ¬(P ∨ Q) → ¬(P ∨ Q) replace Q by ¬(P ∨ Q) in 2

4 ¬(P ∨ Q) → ¬(¬¬P ∨ Q) elementary equivalence in 3 at 8 of

hilb5 with hilb5

5 ¬(P ∨ Q) → ¬(¬¬P ∨ ¬¬Q) elementary equivalence in 4 at 11 of

hilb5 with hilb5

6 ¬(P ∨ Q) → (¬P ∧ ¬Q) reverse abbreviation and in 5 at oc-

curence 1

Reverse of a negation of a disjunction:

Theorem 0.4 (hilb21).
(¬P ∧ ¬Q) → ¬(P ∨ Q)

Proof.
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1 P → P add sentence hilb2

2 Q → Q replace P by Q in 1

3 ¬(P ∨ Q) → ¬(P ∨ Q) replace Q by ¬(P ∨ Q) in 2

4 ¬(¬¬P ∨ Q) → ¬(P ∨ Q) elementary equivalence in 3 at 4 of

hilb5 with hilb5

5 ¬(¬¬P ∨ ¬¬Q) → ¬(P ∨ Q) elementary equivalence in 4 at 7 of

hilb5 with hilb5

6 (¬P ∧ ¬Q) → ¬(P ∨ Q) reverse abbreviation and in 5 at oc-

curence 1

The Conjunction is commutative:

Theorem 0.5 (hilb22).
(P ∧ Q) → (Q ∧ P )

Proof.

1 P → P add sentence hilb2

2 Q → Q replace P by Q in 1

3 (P ∧ Q) → (P ∧ Q) replace Q by P ∧ Q in 2

4 (P ∧ Q) → ¬(¬P ∨ ¬Q) use abbreviation and in 3 at occurence

2

5 (P ∧ Q) → ¬(¬Q ∨ ¬P ) elementary equivalence in 4 at 1 of

hilb9 with hilb9

6 (P ∧ Q) → (Q ∧ P ) reverse abbreviation and in 5 at oc-

curence 1

A technical lemma that is simular to the previous one:

Theorem 0.6 (hilb23).
(Q ∧ P ) → (P ∧ Q)

Proof.

1 (P ∧ Q) → (Q ∧ P ) add sentence hilb22

2 (P ∧ A) → (A ∧ P ) replace Q by A in 1

3 (B ∧ A) → (A ∧ B) replace P by B in 2

4 (B ∧ P ) → (P ∧ B) replace A by P in 3

5 (Q ∧ P ) → (P ∧ Q) replace B by Q in 4

Reduction of a conjunction:

Theorem 0.7 (hilb24).
(P ∧ Q) → P

Proof.

1 P → (P ∨ Q) add axiom axiom2
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2 P → (P ∨ A) replace Q by A in 1

3 B → (B ∨ A) replace P by B in 2

4 B → (B ∨ ¬Q) replace A by ¬Q in 3

5 ¬P → (¬P ∨ ¬Q) replace B by ¬P in 4

6 (P → Q) → (¬Q → ¬P ) add sentence hilb7

7 (P → A) → (¬A → ¬P ) replace Q by A in 6

8 (B → A) → (¬A → ¬B) replace P by B in 7

9 (B → (¬P ∨ ¬Q)) → (¬(¬P ∨ ¬Q) → ¬B) replace A by ¬P ∨ ¬Q in 8

10 (¬P → (¬P ∨ ¬Q)) → (¬(¬P ∨ ¬Q) → ¬¬P ) replace B by ¬P in 9

11 ¬(¬P ∨ ¬Q) → ¬¬P MP with 5, 10

12 (P ∧ Q) → ¬¬P reverse abbreviation and in 11 at oc-

curence 1

13 (P ∧ Q) → P elementary equivalence in 12 at 1 of

hilb6 with hilb6

Another form of a reduction of a conjunction:

Theorem 0.8 (hilb25).
(P ∧ Q) → Q

Proof.

1 (P ∧ Q) → P add sentence hilb24

2 (P ∧ A) → P replace Q by A in 1

3 (B ∧ A) → B replace P by B in 2

4 (B ∧ P ) → B replace A by P in 3

5 (Q ∧ P ) → Q replace B by Q in 4

6 (P ∧ Q) → Q elementary equivalence in 5 at 1 of

hilb22 with hilb22

The conjunction is associative too (first implication):

Theorem 0.9 (hilb26).
(P ∧ (Q ∧ A)) → ((P ∧ Q) ∧ A)

Proof.

1 ((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A)) add sentence hilb15

2 (P → Q) → (¬Q → ¬P ) add sentence hilb7

3 (P → A) → (¬A → ¬P ) replace Q by A in 2

4 (B → A) → (¬A → ¬B) replace P by B in 3

5 (B → (P ∨ (Q ∨ A))) → (¬(P ∨ (Q ∨ A)) → ¬B) replace A by P ∨ (Q ∨ A) in 4

6 (((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A))) → (¬(P ∨ (Q ∨
A)) → ¬((P ∨ Q) ∨ A))

replace B by (P ∨ Q) ∨ A in 5

7 ¬(P ∨ (Q ∨ A)) → ¬((P ∨ Q) ∨ A) MP with 1, 6

8 ¬(P ∨ ¬¬(Q ∨ A)) → ¬((P ∨ Q) ∨ A) elementary equivalence in 7 at 5 of

hilb5 with hilb5

9 ¬(P ∨ ¬¬(Q ∨ A)) → ¬(¬¬(P ∨ Q) ∨ A) elementary equivalence in 8 at 12 of

hilb5 with hilb5

10 ¬(P ∨ ¬¬(Q ∨ B)) → ¬(¬¬(P ∨ Q) ∨ B) replace A by B in 9
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11 ¬(P ∨ ¬¬(C ∨ B)) → ¬(¬¬(P ∨ C) ∨ B) replace Q by C in 10

12 ¬(D ∨ ¬¬(C ∨ B)) → ¬(¬¬(D ∨ C) ∨ B) replace P by D in 11

13 ¬(D ∨ ¬¬(C ∨ ¬A)) → ¬(¬¬(D ∨ C) ∨ ¬A) replace B by ¬A in 12

14 ¬(D ∨ ¬¬(¬Q ∨ ¬A)) → ¬(¬¬(D ∨ ¬Q) ∨ ¬A) replace C by ¬Q in 13

15 ¬(¬P ∨ ¬¬(¬Q ∨ ¬A)) → ¬(¬¬(¬P ∨ ¬Q) ∨ ¬A) replace D by ¬P in 14

16 (P ∧ ¬(¬Q ∨ ¬A)) → ¬(¬¬(¬P ∨ ¬Q) ∨ ¬A) reverse abbreviation and in 15 at oc-

curence 1

17 (P ∧ (Q ∧ A)) → ¬(¬¬(¬P ∨ ¬Q) ∨ ¬A) reverse abbreviation and in 16 at oc-

curence 1

18 (P ∧ (Q ∧ A)) → (¬(¬P ∨ ¬Q) ∧ A) reverse abbreviation and in 17 at oc-

curence 1

19 (P ∧ (Q ∧ A)) → ((P ∧ Q) ∧ A) reverse abbreviation and in 18 at oc-

curence 1

The conjunction is associative (second implication):

Theorem 0.10 (hilb27).
((P ∧ Q) ∧ A) → (P ∧ (Q ∧ A))

Proof.

1 (P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A) add sentence hilb14

2 (P → Q) → (¬Q → ¬P ) add sentence hilb7

3 (P → A) → (¬A → ¬P ) replace Q by A in 2

4 (B → A) → (¬A → ¬B) replace P by B in 3

5 (B → ((P ∨ Q) ∨ A)) → (¬((P ∨ Q) ∨ A) → ¬B) replace A by (P ∨ Q) ∨ A in 4

6 ((P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A)) → (¬((P ∨ Q) ∨
A) → ¬(P ∨ (Q ∨ A)))

replace B by P ∨ (Q ∨ A) in 5

7 ¬((P ∨ Q) ∨ A) → ¬(P ∨ (Q ∨ A)) MP with 1, 6

8 ¬(¬¬(P ∨ Q) ∨ A) → ¬(P ∨ (Q ∨ A)) elementary equivalence in 7 at 4 of

hilb5 with hilb5

9 ¬(¬¬(P ∨ Q) ∨ A) → ¬(P ∨ ¬¬(Q ∨ A)) elementary equivalence in 8 at 13 of

hilb5 with hilb5

10 ¬(¬¬(P ∨ Q) ∨ B) → ¬(P ∨ ¬¬(Q ∨ B)) replace A by B in 9

11 ¬(¬¬(P ∨ C) ∨ B) → ¬(P ∨ ¬¬(C ∨ B)) replace Q by C in 10

12 ¬(¬¬(D ∨ C) ∨ B) → ¬(D ∨ ¬¬(C ∨ B)) replace P by D in 11

13 ¬(¬¬(D ∨ C) ∨ ¬A) → ¬(D ∨ ¬¬(C ∨ ¬A)) replace B by ¬A in 12

14 ¬(¬¬(D ∨ ¬Q) ∨ ¬A) → ¬(D ∨ ¬¬(¬Q ∨ ¬A)) replace C by ¬Q in 13

15 ¬(¬¬(¬P ∨ ¬Q) ∨ ¬A) → ¬(¬P ∨ ¬¬(¬Q ∨ ¬A)) replace D by ¬P in 14

16 (¬(¬P ∨ ¬Q) ∧ A) → ¬(¬P ∨ ¬¬(¬Q ∨ ¬A)) reverse abbreviation and in 15 at oc-

curence 1

17 ((P ∧ Q) ∧ A) → ¬(¬P ∨ ¬¬(¬Q ∨ ¬A)) reverse abbreviation and in 16 at oc-

curence 1

18 ((P ∧ Q) ∧ A) → (P ∧ ¬(¬Q ∨ ¬A)) reverse abbreviation and in 17 at oc-

curence 1

19 ((P ∧ Q) ∧ A) → (P ∧ (Q ∧ A)) reverse abbreviation and in 18 at oc-

curence 1

Form for the conjunction rule:
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Theorem 0.11 (hilb28).
P → (Q → (P ∧ Q))

Proof.

1 P ∨ ¬P add sentence hilb4

2 (¬P ∨ ¬Q) ∨ ¬(¬P ∨ ¬Q) replace P by ¬P ∨ ¬Q in 1

3 ((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A)) add sentence hilb15

4 ((P ∨ Q) ∨ B) → (P ∨ (Q ∨ B)) replace A by B in 3

5 ((P ∨ C) ∨ B) → (P ∨ (C ∨ B)) replace Q by C in 4

6 ((D ∨ C) ∨ B) → (D ∨ (C ∨ B)) replace P by D in 5

7 ((D ∨ C) ∨ ¬(¬P ∨ ¬Q)) → (D ∨ (C ∨ ¬(¬P ∨ ¬Q))) replace B by ¬(¬P ∨ ¬Q) in 6

8 ((D ∨ ¬Q) ∨ ¬(¬P ∨ ¬Q)) → (D ∨ (¬Q ∨ ¬(¬P ∨ ¬Q))) replace C by ¬Q in 7

9 ((¬P ∨ ¬Q) ∨ ¬(¬P ∨ ¬Q)) → (¬P ∨ (¬Q ∨ ¬(¬P ∨
¬Q)))

replace D by ¬P in 8

10 ¬P ∨ (¬Q ∨ ¬(¬P ∨ ¬Q)) MP with 2, 9

11 P → (¬Q ∨ ¬(¬P ∨ ¬Q)) reverse abbreviation impl in 10 at oc-

curence 1

12 P → (Q → ¬(¬P ∨ ¬Q)) reverse abbreviation impl in 11 at oc-

curence 1

13 P → (Q → (P ∧ Q)) reverse abbreviation and in 12 at oc-

curence 1

Preconditions could be put together in a conjunction (first direction):

Theorem 0.12 (hilb29).

(P → (Q → A)) → ((P ∧ Q) → A)

Proof.

1 P → P add sentence hilb2

2 Q → Q replace P by Q in 1

3 (P → (Q → A)) → (P → (Q → A)) replace Q by P → (Q → A) in 2

4 (P → (Q → A)) → (¬P ∨ (Q → A)) use abbreviation impl in 3 at oc-

curence 4

5 (P → (Q → A)) → (¬P ∨ (¬Q ∨ A)) use abbreviation impl in 4 at oc-

curence 4

6 (P → (Q → A)) → ((¬P ∨ ¬Q) ∨ A) elementary equivalence in 5 at 1 of

hilb14 with hilb14

7 (P → (Q → A)) → (¬¬(¬P ∨ ¬Q) ∨ A) elementary equivalence in 6 at 8 of

hilb5 with hilb5

8 (P → (Q → A)) → (¬(¬P ∨ ¬Q) → A) reverse abbreviation impl in 7 at oc-

curence 1

9 (P → (Q → A)) → ((P ∧ Q) → A) reverse abbreviation and in 8 at oc-

curence 1

Preconditions could be put together in a conjunction (second direction):
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Theorem 0.13 (hilb30).

((P ∧ Q) → A) → (P → (Q → A))

Proof.

1 P → P add sentence hilb2

2 Q → Q replace P by Q in 1

3 (P → (Q → A)) → (P → (Q → A)) replace Q by P → (Q → A) in 2

4 (¬P ∨ (Q → A)) → (P → (Q → A)) use abbreviation impl in 3 at oc-

curence 2

5 (¬P ∨ (¬Q ∨ A)) → (P → (Q → A)) use abbreviation impl in 4 at oc-

curence 2

6 ((¬P ∨ ¬Q) ∨ A) → (P → (Q → A)) elementary equivalence in 5 at 1 of

hilb14 with hilb14

7 (¬¬(¬P ∨ ¬Q) ∨ A) → (P → (Q → A)) elementary equivalence in 6 at 3 of

hilb5 with hilb5

8 (¬(¬P ∨ ¬Q) → A) → (P → (Q → A)) reverse abbreviation impl in 7 at oc-

curence 1

9 ((P ∧ Q) → A) → (P → (Q → A)) reverse abbreviation and in 8 at oc-

curence 1

Absorbtion of a conjunction (first direction):

Theorem 0.14 (hilb31).
(P ∧ P ) → P

Proof.

1 (P ∧ Q) → P add sentence hilb24

2 (P ∧ P ) → P replace Q by P in 1

Absorbtion of a conjunction (second direction):

Theorem 0.15 (hilb32).
P → (P ∧ P )

Proof.

1 (P ∨ P ) → P add sentence hilb11

2 (P → Q) → (¬Q → ¬P ) add sentence hilb7

3 (P → A) → (¬A → ¬P ) replace Q by A in 2

4 (B → A) → (¬A → ¬B) replace P by B in 3

5 (B → P ) → (¬P → ¬B) replace A by P in 4

6 ((P ∨ P ) → P ) → (¬P → ¬(P ∨ P )) replace B by P ∨ P in 5

7 ¬P → ¬(P ∨ P ) MP with 1, 6

8 ¬Q → ¬(Q ∨ Q) replace P by Q in 7

9 ¬¬P → ¬(¬P ∨ ¬P ) replace Q by ¬P in 8

10 P → ¬(¬P ∨ ¬P ) elementary equivalence in 9 at 1 of

hilb6 with hilb6
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11 P → (P ∧ P ) reverse abbreviation and in 10 at oc-

curence 1

Absorbtion of identical preconditions (first direction):

Theorem 0.16 (hilb33).
(P → (P → Q)) → (P → Q)

Proof.

1 (P → (Q → A)) → ((P ∧ Q) → A) add sentence hilb29

2 (P → (Q → B)) → ((P ∧ Q) → B) replace A by B in 1

3 (P → (C → B)) → ((P ∧ C) → B) replace Q by C in 2

4 (D → (C → B)) → ((D ∧ C) → B) replace P by D in 3

5 (D → (C → Q)) → ((D ∧ C) → Q) replace B by Q in 4

6 (D → (P → Q)) → ((D ∧ P ) → Q) replace C by P in 5

7 (P → (P → Q)) → ((P ∧ P ) → Q) replace D by P in 6

8 (P → (P → Q)) → (P → Q) elementary equivalence in 7 at 1 of

hilb31 with hilb31

Absorbtion of identical preconditions (second direction):

Theorem 0.17 (hilb34).
(P → Q) → (P → (P → Q))

Proof.

1 ((P ∧ Q) → A) → (P → (Q → A)) add sentence hilb30

2 ((P ∧ Q) → B) → (P → (Q → B)) replace A by B in 1

3 ((P ∧ C) → B) → (P → (C → B)) replace Q by C in 2

4 ((D ∧ C) → B) → (D → (C → B)) replace P by D in 3

5 ((D ∧ C) → Q) → (D → (C → Q)) replace B by Q in 4

6 ((D ∧ P ) → Q) → (D → (P → Q)) replace C by P in 5

7 ((P ∧ P ) → Q) → (P → (P → Q)) replace D by P in 6

8 (P → Q) → (P → (P → Q)) elementary equivalence in 7 at 1 of

hilb31 with hilb31

1 Cross Reference

This module is used by the following modules:

Name: prophilbert3
Version: 1.00.00
Rule version: 1.02.00
Orgin: prophilbert3_1.00.00_1.02.00.qedeq
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