Further Theorems of Propositional Calculus

Michael Meyling

<module@qgedeq.org>

This document is part of the project “Hilbert II”. To get more information about this project look at:
http://www.qedeq.org.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-
mentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant
Sections, no Front-Cover Texts, and no Back-Cover Texts. See also under http://www.gnu.org/copyleft/

Abstract
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Theorem 0.1 (hilb18).

Proof.

=W N =

(P AN Q) — (=P V —Q)

(=P V Q) = (=P V —Q)
(P AQ)— (=P V -Q)

The reverse of a negation of a conjunction:

Theorem 0.2 (hilb19).

Proof.

P—)—|—|P
Q—)—\—|Q

=W N =

Negation of a disjunction:

Theorem 0.3 (hilb20).

Proof.

1 P —- P

2 Q —Q

3 PV Q) —
4 -(PV Q) —
5 (P Vv Q) —

6 ﬁ(P\/Q)—>

(~P v

(-P V Q) — ——(=P V -Q)
(=P Vv Q) — ~(P A Q)

(P VvV Q)
(=P VvV Q)

(<P A Q)

Reverse of a negation of a disjunction:

Theorem 0.4 (hilb21).

Proof.

(=P A =Q) — ~(P Vv Q)

Q) — ~(P N Q)

Q) — (P A -Q)

add sentence hilb6
replace P by Q in 1

replace Q by =P V —Q in 2

reverse abbreviation and in 3 at oc-

curence 1

O

add sentence hilb5
replace P by Q in 1

replace Q by =P V —Q in 2

reverse abbreviation and in 3 at oc-

curence 1

O

add sentence hilb2
replace P by Q in 1

replace Q by —=(P V Q) in 2
elementary equivalence in 3 at 8 of
hilb5 with hilb5

elementary equivalence in 4 at 11 of
hilb5 with hilb5

reverse abbreviation and in 5 at oc-

curence 1

O
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1 P —- P
2 Q- Q
3 -(P Vv

The Conjunction is commutative:

Theorem 0.5 (hilb22).

Proof.
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A technical lemma that is simular to the previous one:

Theorem 0.6 (hilb23).

Proof.
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Reduction of a conjunction:

Theorem 0.7 (hilb24).

Proof.

1 P — (PV Q)

QA P) = (PANQ)

add sentence hilb2
replace P by Q in 1

replace Q by =(P V Q) in 2
elementary equivalence in 3 at 4 of
hilb5 with hilb5

elementary equivalence in 4 at 7 of
hilb5 with hilb5

reverse abbreviation and in 5 at oc-

curence 1

O

add sentence hilb2

replace P by Q in 1

replace @ by P A Q in 2

use abbreviation and in 3 at occurence
2

elementary equivalence in 4 at 1 of
hilb9 with hilb9

reverse abbreviation and in 5 at oc-

curence 1

O

add sentence hilb22
replace Q by A in 1
replace P by B in 2
replace A by P in 3

replace B by Q in 4

add axiom axiom2
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2 P — (PVv A

3 B — (B V A)

4 B — (B V Q)

5 -P — (=P VvV =Q)

6 (P—Q — (-Q — -P)

7 (P —- A) - (mA — -P)

8 (B - A) — (mA — -B)

9 (B = 5PV Q) — (~(=P v ~Q) — -B)
10 -P — (=P V =Q)) — (=(=P V =Q) — —=P)
11 (=P Vv =-Q) — —=P

12 (P AN Q) — ——P

13 (PANQ) — P

Another form of a reduction of a conjunction:

Theorem 0.8 (hilb25).

P AQ) — Q

Proof.
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The conjunction is associative too (first implication):

Theorem 0.9 (hilb26).

(P A(@Q@AA) = (PAQANA

Proof.
1 (PVv Q) Vv A — (PV(QVA)
2 P - Q) — (-Q — —P)
3 (P - A) — (-A — -P)
4 (B - A) — (mA — -B)
5 (B— (PV(@QVA) — (~(PV(@QVA) — -B)
6 (PVQ VA = (PVQVA) - PVEQV
A) = (P Vv Q) v A))
7 (P Vv (QV A) - ~(PVEQ) VA
8 (P V —=(Q V A) - -(PV Q) VvV A
9 APV @V A) = (P V Q) VA
10 (P VvV -=(Q V B)) — —=(—=—(P V Q) V B)

replace Q@ by A in 1
replace P by B in 2

replace A by =Q in 3

replace B by —P in 4

add sentence hilb7

replace Q by A in 6

replace P by B in 7

replace A by =P V —Q in 8

replace B by =P in 9

MP with 5, 10

reverse abbreviation and in 11 at oc-
curence 1

elementary equivalence in 12 at 1 of

hilb6 with hilb6

O

add sentence hilb24
replace Q by A in 1
replace P by B in 2
replace A by P in 3
replace B by Q in 4
elementary equivalence in 5 at 1 of

hilb22 with hilb22

O

add sentence hilb15
add sentence hilb7

replace Q by A in 2

replace P by B in 3

replace Aby P VvV (Q V A)in 4

replace B by (P V Q) V A in 5

MP with 1, 6
elementary equivalence in 7 at 5 of
hilb5 with hilb5
elementary equivalence in 8 at 12 of
hilb5 with hilb5

replace A by B in 9
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11
12
13
14
15
16

17

18

19

(P Vv -=(C VvV B)) — =(=—~(P v C) vV B)

—\(D vV —\—\(C \Y B)) — - —\—\(D \ C) V B)

—\(D vV —|—\(C V —\A)) — —|(—|—\(D vV O) V _‘A)
(D Q) v -A)

(P A(@QANA) = (=P V -Q) vV —4)
(P A@ANA) = (2(=PV =Q) A A)

(P A@QAA)) = ((PAQAA

The conjunction is associative (second implication):

Theorem 0.10 (hilb27).

Proof.

ST W N

EN{

10
11
12
13
14
15
16

17

18

19

(PAQ) ANA) — (PA(QAA)

(P Vv (QVA)—(PVQ) VA

(P = Q) — (-Q — —P)

(P — A) - (-A — -P)

(B - A) — (mA — -B)

(B = (PVQ@VA) — ((PVveQ) VA — -B)
(PV(@QVA) - (PVQ VA — =PV V
A) = (P Vv (Q V 4))

(P V Q) VA — o(PV(QV A)

—(==(P VvV Q) VA — (P V (QV A)

(=P vV Q) VA = (P V(@ V A)

“(==(P vV Q) V B) = =(PV -(Q V B))

-(-==(P v C) V B) - =(P VvV ==(C VvV B))

—|(—\—\(D \Y C) V B) — —\(D V —\—\(C V B))

=(==(D Vv C) vV =A) — =(D VvV —=(C Vv —A))
(=D V =Q) V mA4) — (D V 2=(=Q V —4))
2(=m(=P VvV 2Q) V 2A) — (2P vV on(2Q VvV —4))
(=P V =Q) AN A) — (=P V -=(=Q VvV —A))

(P AQANA) = (PA-EQV -A)

(P AQ)AA) — (PAQAA)

Form for the conjunction rule:

replace Q@ by C in 10

replace P by D in 11

replace B by —A in 12

replace C by =Q in 13

replace D by =P in 14

reverse abbreviation and in 15 at oc-
curence 1

reverse abbreviation and in 16 at oc-
curence 1

reverse abbreviation and in 17 at oc-
curence 1

reverse abbreviation and in 18 at oc-

curence 1

O

add sentence hilb14
add sentence hilb7

replace Q by A in 2

replace P by B in 3

replace A by (P V Q) V Ain 4

replace Bby P V (Q V A)in 5

MP with 1, 6

elementary equivalence in 7 at 4 of
hilb5 with hilb5

elementary equivalence in 8 at 13 of
hilb5 with hilb5

replace A by B in 9

replace Q by C in 10

replace P by D in 11

replace B by —A in 12

replace C by =Q in 13

replace D by —P in 14

reverse abbreviation and in 15 at oc-
curence 1

reverse abbreviation and in 16 at oc-
curence 1

reverse abbreviation and in 17 at oc-
curence 1

reverse abbreviation and in 18 at oc-

curence 1

O
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Theorem 0.11 (hilb28).

Proof.

1 P Vv =P

2 (=P VvV =Q) vV (=P
3 (Pv Q) VvA)-—-

4 (PVv Q) Vv B —

5 (PvVvC(C)vVv B —

6 (Dv C)V B) —

7 (DvC)V=(=PvV

8 ((DV-=Q)V~(=PV
9 (=P V =Q) V (=P

11

12

13

Preconditions could be put together in a conjunction (first direction):

Theorem 0.12 (hilb29).

Proof.
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Preconditions could be put together in a conjunction (second direction):

(P = (@ — 4) = (P AQ — 4

1l o~

J

SO g v«

< <
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P —(Q — (P ArQ)
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P - (Q — (P AN Q)
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(P — (Q — 4))
=PV (Q — 4))

(=P Vv (=Q Vv A))
(=P Vv =Q) Vv A)
(==(=P vV -Q) Vv A)
(=(=P vV Q) — A)

(P ANQ) — A

V (=P V Q)
V(=P v Q)
(—|Q V —|(—\P vV

)
)

add sentence hilb4
replace P by =P V —Q in 1
add sentence hilb15

replace A by B in 3

replace Q by C in 4

replace P by D in 5

replace B by =(=P V —Q) in 6
replace C by =Q in 7

replace D by =P in 8

MP with 2, 9

reverse abbreviation impl in 10 at oc-
curence 1

reverse abbreviation impl in 11 at oc-
curence 1

reverse abbreviation and in 12 at oc-

curence 1

O

add sentence hilb2

replace P by @ in 1

replace Q by P — (Q — A)in 2
use abbreviation impl in 3 at oc-
curence 4

use abbreviation impl in 4 at oc-

curence 4

elementary equivalence in 5 at 1 of
hilb14 with hilb14
elementary equivalence in 6 at 8 of
hilb5 with hilb5

reverse abbreviation impl in 7 at oc-
curence 1

reverse abbreviation and in 8 at oc-

curence 1

O
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Theorem 0.13 (hilb30).

Proof.

ISR R

(P AQ) = A) = (P = (Q = 4)

( ) — (P = (@ — A))
=PV (@ — 4) = (P = (Q — 4)

5 =PV (2Q V A) = (P = (@ — 4))

6 (P Vv =Q) vV A) - (P — (@ — A4))

7 (==(=P VvV =Q) vV A) - (P — (Q — A))

8 =PV =Q) = A) = (P = (@ — 4)

Absorbtion of a conjunction (first direction):

Theorem 0.14 (hilb31).

Proof.

1 (PANQ) — P
2 (PAP) - P

(PAP) — P

Absorbtion of a conjunction (second direction):

Theorem 0.15 (hilb32).

Proof.

O © 00O Uk Wi+

[u—y

P — (P A P)

add sentence hilb2
replace P by @ in 1
replace Q by P — (Q
use abbreviation impl
curence 2

use abbreviation impl

curence 2

elementary equivalence i

hilb14 with hilb14
elementary equivalence

hilb5 with hilb5

in

A) in 2

3 at oc-

4 at oc-

5 at 1 of

6 at 3 of

reverse abbreviation impl in 7 at oc-

curence 1

reverse abbreviation and in 8 at oc-

curence 1

add sentence hilb24

replace Q@ by P in 1

add sentence hilb11l
add sentence hilb7
replace Q by A in 2
replace P by B in 3
replace A by P in 4
replace B by P V P in
MP with 1, 6

replace P by @ in 7

replace Q by —P in 8

5

O

elementary equivalence in 9 at 1 of

hilb6 with hilb6
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1 CROSS REFERENCE

11 P — (P A P)

reverse abbreviation and in 10 at oc-

curence 1

O

Absorbtion of identical preconditions (first direction):

Theorem 0.16 (hilb33).
(P = (P = Q) = (P —Q

Proof.
1 (P — (Q — A)) — ((P A Q) — A) add sentence hilb29
2 (P — (Q — B)) — ((P A Q) — B) replace A by B in 1
3 (P — (C — B)) — ((P N C) — B) replace Q by C in 2
4 (D — (C — B)) — ((D A C) — B) replace P by D in 3
5 (D — (C — Q)) — ((D N C) — Q) replace B by Q in 4
6 (D — (P — Q)) — ((D N P) — Q) replace C by P in 5
7 (P — (P - Q)) - ((P A P) — Q) replace D by P in 6
8 (P — (P - Q)) - (P — Q) elementary equivalence in 7 at 1 of

hilb31 with hilb31
O
Absorbtion of identical preconditions (second direction):

Theorem 0.17 (hilb34).
(P - Q) — (P - (P - Q)

Proof.
1 ((P ANQ) — A — (P - (Q — A)) add sentence hilb30
2 ((P A Q) — B) — (P — (Q — B)) replace A by B in 1
3 ((P A C) — B) — (P — (C — B)) replace Q by C in 2
4 ((D A C) — B) — (D — (C — B)) replace P by D in 3
5 ((D A C) — Q) — (D — (C - Q)) replace B by Q in 4
6 ((D A P) — Q) — (D — (P — Q)) replace C by P in 5
7 (PAP)— Q) — (P— (P— Q) replace D by P in 6
8 (P i Q) — (P i (P — Q)) elementary equivalence in 7 at 1 of

hilb31 with hilb31

O

1 Cross Reference

This module is used by the following modules:

Name: prophilbert3

Version: 1.00.00

Rule version: 1.02.00

Orgin: prophilbert3_1.00.00_1.02.00.qgedeq

pdf: prophilbert3_1.00.00_1.02.00.pdf
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