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Theorem 0.1 (hilb1).
(P → Q) → ((A → P ) → (A → Q))

Proof.

1 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

2 (P → Q) → ((¬A ∨ P ) → (¬A ∨ Q)) replace A by ¬A in 1

3 (P → Q) → ((A → P ) → (¬A ∨ Q)) reverse abbreviation impl in 2 at oc-

curence 1

4 (P → Q) → ((A → P ) → (A → Q)) reverse abbreviation impl in 3 at oc-

curence 1

This proposition is the form for the Hypothetical Syllogism.

The self implication could be derived:

Theorem 0.2 (hilb2).
P → P

Proof.

1 P → (P ∨ Q) add axiom axiom2

2 P → (P ∨ P ) replace Q by P in 1

3 (P ∨ P ) → P add axiom axiom1

4 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

5 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 4

6 (P → C) → ((B → P ) → (B → C)) replace Q by C in 5

7 (D → C) → ((B → D) → (B → C)) replace P by D in 6

8 (D → C) → ((P → D) → (P → C)) replace B by P in 7

9 (D → P ) → ((P → D) → (P → P )) replace C by P in 8

10 ((P ∨ P ) → P ) → ((P → (P ∨ P )) → (P → P )) replace D by P ∨ P in 9

11 (P → (P ∨ P )) → (P → P ) MP with 3, 10

12 P → P MP with 2, 11

One form of the classical ‘tertium non datur’

Theorem 0.3 (hilb3).
¬P ∨ P

Proof.

1 P → P add sentence hilb2

2 ¬P ∨ P use abbreviation impl in 1 at oc-

curence 1

The standard form of the excluded middle:
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Theorem 0.4 (hilb4).
P ∨ ¬P

Proof.

1 ¬P ∨ P add sentence hilb3

2 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

3 (P ∨ A) → (A ∨ P ) replace Q by A in 2

4 (B ∨ A) → (A ∨ B) replace P by B in 3

5 (B ∨ P ) → (P ∨ B) replace A by P in 4

6 (¬P ∨ P ) → (P ∨ ¬P ) replace B by ¬P in 5

7 P ∨ ¬P MP with 1, 6

Double negation is implicated:

Theorem 0.5 (hilb5).
P → ¬¬P

Proof.

1 P ∨ ¬P add sentence hilb4

2 ¬P ∨ ¬¬P replace P by ¬P in 1

3 P → ¬¬P reverse abbreviation impl in 2 at oc-

curence 1

The reverse is also true:

Theorem 0.6 (hilb6).
¬¬P → P

Proof.

1 P → ¬¬P add sentence hilb5

2 ¬P → ¬¬¬P replace P by ¬P in 1

3 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

4 (P → Q) → ((B ∨ P ) → (B ∨ Q)) replace A by B in 3

5 (P → C) → ((B ∨ P ) → (B ∨ C)) replace Q by C in 4

6 (D → C) → ((B ∨ D) → (B ∨ C)) replace P by D in 5

7 (D → C) → ((P ∨ D) → (P ∨ C)) replace B by P in 6

8 (D → ¬¬¬P ) → ((P ∨ D) → (P ∨ ¬¬¬P )) replace C by ¬¬¬P in 7

9 (¬P → ¬¬¬P ) → ((P ∨ ¬P ) → (P ∨ ¬¬¬P )) replace D by ¬P in 8

10 (P ∨ ¬P ) → (P ∨ ¬¬¬P ) MP with 2, 9

11 P ∨ ¬P add sentence hilb4

12 P ∨ ¬¬¬P MP with 11, 10

13 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

14 (P ∨ A) → (A ∨ P ) replace Q by A in 13

15 (B ∨ A) → (A ∨ B) replace P by B in 14

16 (B ∨ ¬¬¬P ) → (¬¬¬P ∨ B) replace A by ¬¬¬P in 15

17 (P ∨ ¬¬¬P ) → (¬¬¬P ∨ P ) replace B by P in 16
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18 ¬¬¬P ∨ P MP with 12, 17

19 ¬¬P → P reverse abbreviation impl in 18 at oc-

curence 1

The correct reverse of an implication:

Theorem 0.7 (hilb7).
(P → Q) → (¬Q → ¬P )

Proof.

1 P → ¬¬P add sentence hilb5

2 Q → ¬¬Q replace P by Q in 1

3 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

4 (P → Q) → ((B ∨ P ) → (B ∨ Q)) replace A by B in 3

5 (P → C) → ((B ∨ P ) → (B ∨ C)) replace Q by C in 4

6 (D → C) → ((B ∨ D) → (B ∨ C)) replace P by D in 5

7 (D → C) → ((¬P ∨ D) → (¬P ∨ C)) replace B by ¬P in 6

8 (D → ¬¬Q) → ((¬P ∨ D) → (¬P ∨ ¬¬Q)) replace C by ¬¬Q in 7

9 (Q → ¬¬Q) → ((¬P ∨ Q) → (¬P ∨ ¬¬Q)) replace D by Q in 8

10 (¬P ∨ Q) → (¬P ∨ ¬¬Q) MP with 2, 9

11 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

12 (P ∨ A) → (A ∨ P ) replace Q by A in 11

13 (B ∨ A) → (A ∨ B) replace P by B in 12

14 (B ∨ ¬¬Q) → (¬¬Q ∨ B) replace A by ¬¬Q in 13

15 (¬P ∨ ¬¬Q) → (¬¬Q ∨ ¬P ) replace B by ¬P in 14

16 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

17 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 16

18 (P → C) → ((B → P ) → (B → C)) replace Q by C in 17

19 (D → C) → ((B → D) → (B → C)) replace P by D in 18

20 (D → C) → (((¬P ∨ Q) → D) → ((¬P ∨ Q) → C)) replace B by ¬P ∨ Q in 19

21 (D → (¬¬Q ∨ ¬P )) → (((¬P ∨ Q) → D) →
((¬P ∨ Q) → (¬¬Q ∨ ¬P )))

replace C by ¬¬Q ∨ ¬P in 20

22 ((¬P ∨ ¬¬Q) → (¬¬Q ∨ ¬P )) → (((¬P ∨ Q) →
(¬P ∨ ¬¬Q)) → ((¬P ∨ Q) → (¬¬Q ∨ ¬P )))

replace D by ¬P ∨ ¬¬Q in 21

23 ((¬P ∨ Q) → (¬P ∨ ¬¬Q)) → ((¬P ∨ Q) →
(¬¬Q ∨ ¬P ))

MP with 15, 22

24 (¬P ∨ Q) → (¬¬Q ∨ ¬P ) MP with 10, 23

25 (P → Q) → (¬¬Q ∨ ¬P ) reverse abbreviation impl in 24 at oc-

curence 1

26 (P → Q) → (¬Q → ¬P ) reverse abbreviation impl in 25 at oc-

curence 1

Definition of an Implication 1. part:

Theorem 0.8 (defimpl1).
(P → Q) → (¬P ∨ Q)

Proof.
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1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P → Q) → (P → Q) replace A by P → Q in 2

4 (P → Q) → (¬P ∨ Q) use abbreviation impl in 3 at oc-

curence 3

Definition of an Implication 2. part:

Theorem 0.9 (defimpl2).
(¬P ∨ Q) → (P → Q)

Proof.

1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P → Q) → (P → Q) replace A by P → Q in 2

4 (¬P ∨ Q) → (P → Q) use abbreviation impl in 3 at oc-

curence 2

Definition of a Conjunction 1. part:

Theorem 0.10 (defand1).
(P ∧ Q) → ¬(¬P ∨ ¬Q)

Proof.

1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P ∧ Q) → (P ∧ Q) replace A by P ∧ Q in 2

4 (P ∧ Q) → ¬(¬P ∨ ¬Q) use abbreviation and in 3 at occurence

2

Definition of a Conjunction 2. part:

Theorem 0.11 (defand2).
¬(¬P ∨ ¬Q) → (P ∧ Q)

Proof.

1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P ∧ Q) → (P ∧ Q) replace A by P ∧ Q in 2

4 ¬(¬P ∨ ¬Q) → (P ∧ Q) use abbreviation and in 3 at occurence

1

Definition of an Equivalence 1. part:
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Theorem 0.12 (defequi1).

(P ↔ Q) → ((P → Q) ∧ (Q → P ))

Proof.

1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P ↔ Q) → (P ↔ Q) replace A by P ↔ Q in 2

4 (P ↔ Q) → ((P → Q) ∧ (Q → P )) use abbreviation equi in 3 at oc-

curence 2

Definition of an Equivalence 2. part:

Theorem 0.13 (defequi2).

((P → Q) ∧ (Q → P )) → (P ↔ Q)

Proof.

1 P → P add sentence hilb2

2 A → A replace P by A in 1

3 (P ↔ Q) → (P ↔ Q) replace A by P ↔ Q in 2

4 ((P → Q) ∧ (Q → P )) → (P ↔ Q) use abbreviation equi in 3 at oc-

curence 1

A simular formulation for the second axiom:

Theorem 0.14 (hilb8).
P → (Q ∨ P )

Proof.

1 P → (P ∨ Q) add axiom axiom2

2 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

3 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

4 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 3

5 (P → C) → ((B → P ) → (B → C)) replace Q by C in 4

6 (D → C) → ((B → D) → (B → C)) replace P by D in 5

7 (D → C) → ((P → D) → (P → C)) replace B by P in 6

8 (D → (Q ∨ P )) → ((P → D) → (P → (Q ∨ P ))) replace C by Q ∨ P in 7

9 ((P ∨ Q) → (Q ∨ P )) → ((P → (P ∨ Q)) → (P →
(Q ∨ P )))

replace D by P ∨ Q in 8

10 (P → (P ∨ Q)) → (P → (Q ∨ P )) MP with 2, 9

11 P → (Q ∨ P ) MP with 1, 10

A technical lemma (equal to the third axiom):
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Theorem 0.15 (hilb9).
(P ∨ Q) → (Q ∨ P )

Proof.

1 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

And another technical lemma (simular to the third axiom):

Theorem 0.16 (hilb10).
(Q ∨ P ) → (P ∨ Q)

Proof.

1 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

2 (P ∨ A) → (A ∨ P ) replace Q by A in 1

3 (B ∨ A) → (A ∨ B) replace P by B in 2

4 (B ∨ P ) → (P ∨ B) replace A by P in 3

5 (Q ∨ P ) → (P ∨ Q) replace B by Q in 4

A technical lemma (equal to the first axiom):

Theorem 0.17 (hilb11).
(P ∨ P ) → P

Proof.

1 (P ∨ P ) → P add axiom axiom1

A simple propositon that follows directly from the second axiom:

Theorem 0.18 (hilb12).
P → (P ∨ P )

Proof.

1 P → (P ∨ Q) add axiom axiom2

2 P → (P ∨ P ) replace Q by P in 1

This is a pre form for the associative law:

Theorem 0.19 (hilb13).
(P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A))

Proof.

1 P → (Q ∨ P ) add sentence hilb8
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2 P → (B ∨ P ) replace Q by B in 1

3 C → (B ∨ C) replace P by C in 2

4 C → (P ∨ C) replace B by P in 3

5 A → (P ∨ A) replace C by A in 4

6 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

7 (P → Q) → ((B ∨ P ) → (B ∨ Q)) replace A by B in 6

8 (P → C) → ((B ∨ P ) → (B ∨ C)) replace Q by C in 7

9 (D → C) → ((B ∨ D) → (B ∨ C)) replace P by D in 8

10 (D → C) → ((Q ∨ D) → (Q ∨ C)) replace B by Q in 9

11 (D → (P ∨ A)) → ((Q ∨ D) → (Q ∨ (P ∨ A))) replace C by P ∨ A in 10

12 (A → (P ∨ A)) → ((Q ∨ A) → (Q ∨ (P ∨ A))) replace D by A in 11

13 (Q ∨ A) → (Q ∨ (P ∨ A)) MP with 5, 12

14 (D → C) → ((P ∨ D) → (P ∨ C)) replace B by P in 9

15 (D → (Q ∨ (P ∨ A))) → ((P ∨ D) → (P ∨ (Q ∨
(P ∨ A))))

replace C by Q ∨ (P ∨ A) in 14

16 ((Q ∨ A) → (Q ∨ (P ∨ A))) → ((P ∨ (Q ∨ A)) →
(P ∨ (Q ∨ (P ∨ A))))

replace D by Q ∨ A in 15

17 (P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A))) MP with 13, 16

18 (P ∨ Q) → (Q ∨ P ) add sentence hilb9

19 (P ∨ B) → (B ∨ P ) replace Q by B in 18

20 (C ∨ B) → (B ∨ C) replace P by C in 19

21 (C ∨ (Q ∨ (P ∨ A))) → ((Q ∨ (P ∨ A)) ∨ C) replace B by Q ∨ (P ∨ A) in 20

22 (P ∨ (Q ∨ (P ∨ A))) → ((Q ∨ (P ∨ A)) ∨ P ) replace C by P in 21

23 (P → Q) → (¬P ∨ Q) add sentence defimpl1

24 (¬P ∨ Q) → (P → Q) add sentence defimpl2

25 (D → C) → ((¬(P ∨ (Q ∨ A)) ∨ D) → (¬(P ∨
(Q ∨ A)) ∨ C))

replace B by ¬(P ∨ (Q ∨ A)) in 9

26 (D → ((Q ∨ (P ∨ A)) ∨ P )) → ((¬(P ∨ (Q ∨ A)) ∨
D) → (¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P )))

replace C by (Q ∨ (P ∨ A)) ∨ P

in 25

27 ((P ∨ (Q ∨ (P ∨ A))) → ((Q ∨ (P ∨ A)) ∨ P )) →
((¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P )))

replace D by P ∨ (Q ∨ (P ∨ A))

in 26

28 (¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))

MP with 22, 27

29 (P → B) → (¬P ∨ B) replace Q by B in 23

30 (C → B) → (¬C ∨ B) replace P by C in 29

31 (C → (P ∨ (Q ∨ (P ∨ A)))) → (¬C ∨ (P ∨ (Q ∨
(P ∨ A))))

replace B by P ∨ (Q ∨ (P ∨ A))

in 30

32 ((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A))))

replace C by P ∨ (Q ∨ A) in 31

33 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

34 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 33

35 (P → C) → ((B → P ) → (B → C)) replace Q by C in 34

36 (D → C) → ((B → D) → (B → C)) replace P by D in 35

37 (D → C) → ((((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨
A)))) → D) → (((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨
A)))) → C))

replace B by (P ∨ (Q ∨ A)) →

(P ∨ (Q ∨ (P ∨ A))) in 36

38 (D → (¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))) →
((((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
D) → (((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))))

replace C by ¬(P ∨ (Q ∨ A)) ∨

((Q ∨ (P ∨ A)) ∨ P ) in 37
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39 ((¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))) →
((((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A))))) →
(((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))))

replace D by ¬(P ∨ (Q ∨ A)) ∨

(P ∨ (Q ∨ (P ∨ A))) in 38

40 (((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ (P ∨ (Q ∨ (P ∨ A))))) →
(((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P )))

MP with 28, 39

41 ((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))

MP with 32, 40

42 (¬P ∨ B) → (P → B) replace Q by B in 24

43 (¬C ∨ B) → (C → B) replace P by C in 42

44 (¬C ∨ ((Q ∨ (P ∨ A)) ∨ P )) → (C → ((Q ∨ (P ∨
A)) ∨ P ))

replace B by (Q ∨ (P ∨ A)) ∨ P

in 43

45 (¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P )) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))

replace C by P ∨ (Q ∨ A) in 44

46 (D → ((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))) →
((((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
D) → (((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))))

replace C by (P ∨ (Q ∨ A)) →

((Q ∨ (P ∨ A)) ∨ P ) in 37

47 ((¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P )) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))) →
((((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))) →
(((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))))

replace D by ¬(P ∨ (Q ∨ A)) ∨

((Q ∨ (P ∨ A)) ∨ P ) in 46

48 (((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
(¬(P ∨ (Q ∨ A)) ∨ ((Q ∨ (P ∨ A)) ∨ P ))) →
(((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P )))

MP with 45, 47

49 ((P ∨ (Q ∨ A)) → (P ∨ (Q ∨ (P ∨ A)))) →
((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ))

MP with 41, 48

50 (P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P ) MP with 17, 49

51 (P ∨ A) → (Q ∨ (P ∨ A)) replace P by P ∨ A in 1

52 P → (P ∨ Q) add axiom axiom2

53 P → (P ∨ A) replace Q by A in 52

54 (D → C) → ((P → D) → (P → C)) replace B by P in 36

55 (D → (Q ∨ (P ∨ A))) → ((P → D) → (P →
(Q ∨ (P ∨ A))))

replace C by Q ∨ (P ∨ A) in 54

56 ((P ∨ A) → (Q ∨ (P ∨ A))) → ((P → (P ∨ A)) →
(P → (Q ∨ (P ∨ A))))

replace D by P ∨ A in 55

57 (P → (P ∨ A)) → (P → (Q ∨ (P ∨ A))) MP with 51, 56

58 P → (Q ∨ (P ∨ A)) MP with 53, 57

59 (D → C) → (((Q ∨ (P ∨ A)) ∨ D) → ((Q ∨ (P ∨
A)) ∨ C))

replace B by Q ∨ (P ∨ A) in 9

60 (D → (Q ∨ (P ∨ A))) → (((Q ∨ (P ∨ A)) ∨ D) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))))

replace C by Q ∨ (P ∨ A) in 59

61 (P → (Q ∨ (P ∨ A))) → (((Q ∨ (P ∨ A)) ∨ P ) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))))

replace D by P in 60

62 ((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))) MP with 58, 61
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63 (P ∨ P ) → P add sentence hilb11

64 (B ∨ B) → B replace P by B in 63

65 ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))) → (Q ∨ (P ∨ A)) replace B by Q ∨ (P ∨ A) in 64

66 (D → C) → ((¬((Q ∨ (P ∨ A)) ∨ P ) ∨ D) →
(¬((Q ∨ (P ∨ A)) ∨ P ) ∨ C))

replace B by ¬((Q ∨ (P ∨ A)) ∨ P )

in 9

67 (D → (Q ∨ (P ∨ A))) → ((¬((Q ∨ (P ∨ A)) ∨ P ) ∨
D) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A))))

replace C by Q ∨ (P ∨ A) in 66

68 (((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))) → (Q ∨ (P ∨ A))) →
((¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A))))

replace D by (Q ∨ (P ∨ A)) ∨ (Q ∨

(P ∨ A)) in 67

69 (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))

MP with 65, 68

70 (C → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) →
(¬C ∨ ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A))))

replace B by (Q ∨ (P ∨ A)) ∨ (Q ∨

(P ∨ A)) in 30

71 (((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨
(P ∨ A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨
A)) ∨ (Q ∨ (P ∨ A))))

replace C by (Q ∨ (P ∨ A)) ∨ P

in 70

72 (D → C) → (((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨
A)) ∨ (Q ∨ (P ∨ A)))) → D) → ((((Q ∨ (P ∨ A)) ∨
P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) → C))

replace B by ((Q ∨ (P ∨ A)) ∨ P ) →

((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))

in 36

73 (D → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))) →
(((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨
(P ∨ A)))) → D) → ((((Q ∨ (P ∨ A)) ∨ P ) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) → (¬((Q ∨ (P ∨
A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))))

replace C by ¬((Q ∨ (P ∨ A)) ∨

P ) ∨ (Q ∨ (P ∨ A)) in 72

74 ((¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))) →
(((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨
(P ∨ A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨
A)) ∨ (Q ∨ (P ∨ A))))) → ((((Q ∨ (P ∨ A)) ∨ P ) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) → (¬((Q ∨ (P ∨
A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))))

replace D by ¬((Q ∨ (P ∨ A)) ∨ P ) ∨

((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))

in 73

75 ((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨
(P ∨ A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ ((Q ∨ (P ∨
A)) ∨ (Q ∨ (P ∨ A))))) → ((((Q ∨ (P ∨ A)) ∨ P ) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) → (¬((Q ∨ (P ∨
A)) ∨ P ) ∨ (Q ∨ (P ∨ A))))

MP with 69, 74

76 (((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))

MP with 71, 75

77 (¬C ∨ (Q ∨ (P ∨ A))) → (C → (Q ∨ (P ∨ A))) replace B by Q ∨ (P ∨ A) in 43

78 (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A))) →
(((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)))

replace C by (Q ∨ (P ∨ A)) ∨ P

in 77

79 (D → (((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)))) →
(((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨
(P ∨ A)))) → D) → ((((Q ∨ (P ∨ A)) ∨ P ) →
((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨ A)))) → (((Q ∨ (P ∨
A)) ∨ P ) → (Q ∨ (P ∨ A)))))

replace C by ((Q ∨ (P ∨ A)) ∨ P ) →

(Q ∨ (P ∨ A)) in 72
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80 ((¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A))) →
(((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)))) →
(((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))) →
((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)))))

replace D by ¬((Q ∨ (P ∨ A)) ∨

P ) ∨ (Q ∨ (P ∨ A)) in 79

81 ((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (¬((Q ∨ (P ∨ A)) ∨ P ) ∨ (Q ∨ (P ∨ A)))) →
((((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A))))

MP with 78, 80

82 (((Q ∨ (P ∨ A)) ∨ P ) → ((Q ∨ (P ∨ A)) ∨ (Q ∨ (P ∨
A)))) → (((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)))

MP with 76, 81

83 ((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A)) MP with 62, 82

84 (D → C) → (((P ∨ (Q ∨ A)) → D) → ((P ∨ (Q ∨
A)) → C))

replace B by P ∨ (Q ∨ A) in 36

85 (D → (Q ∨ (P ∨ A))) → (((P ∨ (Q ∨ A)) → D) →
((P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A))))

replace C by Q ∨ (P ∨ A) in 84

86 (((Q ∨ (P ∨ A)) ∨ P ) → (Q ∨ (P ∨ A))) →
(((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P )) →
((P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A))))

replace D by (Q ∨ (P ∨ A)) ∨ P

in 85

87 ((P ∨ (Q ∨ A)) → ((Q ∨ (P ∨ A)) ∨ P )) →
((P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A)))

MP with 83, 86

88 (P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A)) MP with 50, 87

The associative law for the disjunction (first direction):

Theorem 0.20 (hilb14).
(P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A)

Proof.

1 (P ∨ Q) → (Q ∨ P ) add sentence hilb9

2 (P ∨ B) → (B ∨ P ) replace Q by B in 1

3 (C ∨ B) → (B ∨ C) replace P by C in 2

4 (C ∨ A) → (A ∨ C) replace B by A in 3

5 (Q ∨ A) → (A ∨ Q) replace C by Q in 4

6 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

7 (P → Q) → ((B ∨ P ) → (B ∨ Q)) replace A by B in 6

8 (P → C) → ((B ∨ P ) → (B ∨ C)) replace Q by C in 7

9 (D → C) → ((B ∨ D) → (B ∨ C)) replace P by D in 8

10 (D → C) → ((P ∨ D) → (P ∨ C)) replace B by P in 9

11 (D → (A ∨ Q)) → ((P ∨ D) → (P ∨ (A ∨ Q))) replace C by A ∨ Q in 10

12 ((Q ∨ A) → (A ∨ Q)) → ((P ∨ (Q ∨ A)) →
(P ∨ (A ∨ Q)))

replace D by Q ∨ A in 11

13 (P ∨ (Q ∨ A)) → (P ∨ (A ∨ Q)) MP with 5, 12

14 (P → Q) → (¬P ∨ Q) add sentence defimpl1

15 (¬P ∨ Q) → (P → Q) add sentence defimpl2

16 (P → B) → (¬P ∨ B) replace Q by B in 14

17 (C → B) → (¬C ∨ B) replace P by C in 16

18 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

19 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 18
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20 (P → C) → ((B → P ) → (B → C)) replace Q by C in 19

21 (D → C) → ((B → D) → (B → C)) replace P by D in 20

22 (¬P ∨ B) → (P → B) replace Q by B in 15

23 (¬C ∨ B) → (C → B) replace P by C in 22

24 (P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A)) add sentence hilb13

25 (P ∨ (Q ∨ B)) → (Q ∨ (P ∨ B)) replace A by B in 24

26 (P ∨ (C ∨ B)) → (C ∨ (P ∨ B)) replace Q by C in 25

27 (D ∨ (C ∨ B)) → (C ∨ (D ∨ B)) replace P by D in 26

28 (D ∨ (C ∨ Q)) → (C ∨ (D ∨ Q)) replace B by Q in 27

29 (D ∨ (A ∨ Q)) → (A ∨ (D ∨ Q)) replace C by A in 28

30 (P ∨ (A ∨ Q)) → (A ∨ (P ∨ Q)) replace D by P in 29

31 (D → C) → (((P ∨ (Q ∨ A)) → D) → ((P ∨ (Q ∨
A)) → C))

replace B by P ∨ (Q ∨ A) in 21

32 (D → (A ∨ (P ∨ Q))) → (((P ∨ (Q ∨ A)) → D) →
((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))))

replace C by A ∨ (P ∨ Q) in 31

33 ((P ∨ (A ∨ Q)) → (A ∨ (P ∨ Q))) → (((P ∨ (Q ∨ A)) →
(P ∨ (A ∨ Q))) → ((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))))

replace D by P ∨ (A ∨ Q) in 32

34 ((P ∨ (Q ∨ A)) → (P ∨ (A ∨ Q))) → ((P ∨ (Q ∨ A)) →
(A ∨ (P ∨ Q)))

MP with 30, 33

35 (P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q)) MP with 13, 34

36 (C ∨ (P ∨ Q)) → ((P ∨ Q) ∨ C) replace B by P ∨ Q in 3

37 (A ∨ (P ∨ Q)) → ((P ∨ Q) ∨ A) replace C by A in 36

38 (D → C) → ((¬(P ∨ (Q ∨ A)) ∨ D) → (¬(P ∨
(Q ∨ A)) ∨ C))

replace B by ¬(P ∨ (Q ∨ A)) in 9

39 (D → ((P ∨ Q) ∨ A)) → ((¬(P ∨ (Q ∨ A)) ∨ D) →
(¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A)))

replace C by (P ∨ Q) ∨ A in 38

40 ((A ∨ (P ∨Q)) → ((P ∨Q) ∨ A)) → ((¬(P ∨ (Q ∨ A)) ∨
(A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A)))

replace D by A ∨ (P ∨ Q) in 39

41 (¬(P ∨ (Q ∨ A)) ∨ (A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨
A)) ∨ ((P ∨ Q) ∨ A))

MP with 37, 40

42 (C → (A ∨ (P ∨ Q))) → (¬C ∨ (A ∨ (P ∨ Q))) replace B by A ∨ (P ∨ Q) in 17

43 ((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨
A)) ∨ (A ∨ (P ∨ Q)))

replace C by P ∨ (Q ∨ A) in 42

44 (D → C) → ((((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) →
D) → (((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → C))

replace B by (P ∨ (Q ∨ A)) →

(A ∨ (P ∨ Q)) in 21

45 (D → (¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A))) →
((((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → D) →
(((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨
A)) ∨ ((P ∨ Q) ∨ A))))

replace C by ¬(P ∨ (Q ∨ A)) ∨

((P ∨ Q) ∨ A) in 44

46 ((¬(P ∨ (Q ∨ A)) ∨ (A ∨ (P ∨ Q))) → (¬(P ∨
(Q ∨ A)) ∨ ((P ∨ Q) ∨ A))) → ((((P ∨ (Q ∨ A)) →
(A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨ A)) ∨ (A ∨ (P ∨
Q)))) → (((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) →
(¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A))))

replace D by ¬(P ∨ (Q ∨ A)) ∨

(A ∨ (P ∨ Q)) in 45

47 (((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → (¬(P ∨
(Q ∨ A)) ∨ (A ∨ (P ∨ Q)))) → (((P ∨ (Q ∨ A)) →
(A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A)))

MP with 41, 46

48 ((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨
A)) ∨ ((P ∨ Q) ∨ A))

MP with 43, 47

49 (¬C ∨ ((P ∨ Q) ∨ A)) → (C → ((P ∨ Q) ∨ A)) replace B by (P ∨ Q) ∨ A in 23

50 (¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A)) → ((P ∨ (Q ∨ A)) →
((P ∨ Q) ∨ A))

replace C by P ∨ (Q ∨ A) in 49
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51 (D → ((P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A))) →
((((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → D) →
(((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → ((P ∨ (Q ∨ A)) →
((P ∨ Q) ∨ A))))

replace C by (P ∨ (Q ∨ A)) →

((P ∨ Q) ∨ A) in 44

52 ((¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A)) → ((P ∨ (Q ∨
A)) → ((P ∨ Q) ∨ A))) → ((((P ∨ (Q ∨ A)) →
(A ∨ (P ∨ Q))) → (¬(P ∨ (Q ∨ A)) ∨ ((P ∨ Q) ∨ A))) →
(((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → ((P ∨ (Q ∨ A)) →
((P ∨ Q) ∨ A))))

replace D by ¬(P ∨ (Q ∨ A)) ∨

((P ∨ Q) ∨ A) in 51

53 (((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → (¬(P ∨
(Q ∨ A)) ∨ ((P ∨ Q) ∨ A))) → (((P ∨ (Q ∨ A)) →
(A ∨ (P ∨ Q))) → ((P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A)))

MP with 50, 52

54 ((P ∨ (Q ∨ A)) → (A ∨ (P ∨ Q))) → ((P ∨ (Q ∨ A)) →
((P ∨ Q) ∨ A))

MP with 48, 53

55 (P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A) MP with 35, 54

The associative law for the disjunction (second direction):

Theorem 0.21 (hilb15).
((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A))

Proof.

1 (P ∨ (Q ∨ A)) → ((P ∨ Q) ∨ A) add sentence hilb14

2 (P ∨ (Q ∨ B)) → ((P ∨ Q) ∨ B) replace A by B in 1

3 (P ∨ (C ∨ B)) → ((P ∨ C) ∨ B) replace Q by C in 2

4 (D ∨ (C ∨ B)) → ((D ∨ C) ∨ B) replace P by D in 3

5 (D ∨ (C ∨ P )) → ((D ∨ C) ∨ P ) replace B by P in 4

6 (D ∨ (Q ∨ P )) → ((D ∨ Q) ∨ P ) replace C by Q in 5

7 (A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P ) replace D by A in 6

8 (Q ∨ P ) → (P ∨ Q) add sentence hilb10

9 (B ∨ P ) → (P ∨ B) replace Q by B in 8

10 (B ∨ C) → (C ∨ B) replace P by C in 9

11 ((Q ∨ P ) ∨ C) → (C ∨ (Q ∨ P )) replace B by Q ∨ P in 10

12 ((Q ∨ P ) ∨ A) → (A ∨ (Q ∨ P )) replace C by A in 11

13 (P → Q) → (¬P ∨ Q) add sentence defimpl1

14 (¬P ∨ Q) → (P → Q) add sentence defimpl2

15 (P → Q) → (¬Q → ¬P ) add sentence hilb7

16 (P → B) → (¬B → ¬P ) replace Q by B in 15

17 (C → B) → (¬B → ¬C) replace P by C in 16

18 (C → (A ∨ (Q ∨ P ))) → (¬(A ∨ (Q ∨ P )) → ¬C) replace B by A ∨ (Q ∨ P ) in 17

19 (((Q ∨ P ) ∨ A) → (A ∨ (Q ∨ P ))) → (¬(A ∨ (Q ∨
P )) → ¬((Q ∨ P ) ∨ A))

replace C by (Q ∨ P ) ∨ A in 18

20 ¬(A ∨ (Q ∨ P )) → ¬((Q ∨ P ) ∨ A) MP with 12, 19

21 (P → Q) → ((A ∨ P ) → (A ∨ Q)) add axiom axiom4

22 (P → Q) → ((B ∨ P ) → (B ∨ Q)) replace A by B in 21

23 (P → C) → ((B ∨ P ) → (B ∨ C)) replace Q by C in 22

24 (D → C) → ((B ∨ D) → (B ∨ C)) replace P by D in 23

25 (D → C) → ((((A ∨ Q) ∨ P ) ∨ D) → (((A ∨ Q) ∨
P ) ∨ C))

replace B by (A ∨ Q) ∨ P in 24

26 (D → ¬((Q ∨ P ) ∨ A)) → ((((A ∨ Q) ∨ P ) ∨ D) →
(((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)))

replace C by ¬((Q ∨ P ) ∨ A) in 25
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27 (¬(A ∨ (Q ∨ P )) → ¬((Q ∨ P ) ∨ A)) → ((((A ∨
Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → (((A ∨ Q) ∨ P ) ∨
¬((Q ∨ P ) ∨ A)))

replace D by ¬(A ∨ (Q ∨ P )) in 26

28 (((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → (((A ∨ Q) ∨
P ) ∨ ¬((Q ∨ P ) ∨ A))

MP with 20, 27

29 (P ∨ Q) → (Q ∨ P ) add axiom axiom3

30 (P ∨ B) → (B ∨ P ) replace Q by B in 29

31 (C ∨ B) → (B ∨ C) replace P by C in 30

32 (C ∨ ¬((Q ∨ P ) ∨ A)) → (¬((Q ∨ P ) ∨ A) ∨ C) replace B by ¬((Q ∨ P ) ∨ A) in 31

33 (((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (¬((Q ∨ P ) ∨
A) ∨ ((A ∨ Q) ∨ P ))

replace C by (A ∨ Q) ∨ P in 32

34 (P → Q) → ((A → P ) → (A → Q)) add sentence hilb1

35 (P → Q) → ((B → P ) → (B → Q)) replace A by B in 34

36 (P → C) → ((B → P ) → (B → C)) replace Q by C in 35

37 (D → C) → ((B → D) → (B → C)) replace P by D in 36

38 (D → C) → (((((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) →
D) → ((((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → C))

replace B by ((A ∨ Q) ∨ P ) ∨ ¬(A ∨

(Q ∨ P )) in 37

39 (D → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((A ∨
Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → D) → ((((A ∨ Q) ∨ P ) ∨
¬(A ∨ (Q ∨ P ))) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 38

40 ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((A ∨ Q) ∨ P ) ∨
¬(A ∨ (Q ∨ P ))) → (((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨
A))) → ((((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) →
(¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ((A ∨ Q) ∨ P ) ∨ ¬((Q ∨

P ) ∨ A) in 39

41 ((((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → (((A ∨ Q) ∨
P ) ∨ ¬((Q ∨ P ) ∨ A))) → ((((A ∨ Q) ∨ P ) ∨ ¬(A ∨
(Q ∨ P ))) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 33, 40

42 (((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → (¬((Q ∨ P ) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 28, 41

43 (C ∨ ((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨ P ) ∨ C) replace B by (A ∨ Q) ∨ P in 31

44 (¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨
P ) ∨ ¬(A ∨ (Q ∨ P )))

replace C by ¬(A ∨ (Q ∨ P )) in 43

45 (D → C) → (((¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) →
D) → ((¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → C))

replace B by ¬(A ∨ (Q ∨ P )) ∨

((A ∨ Q) ∨ P ) in 37

46 (D → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((¬(A ∨
(Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → D) → ((¬(A ∨ (Q ∨ P )) ∨
((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 45

47 ((((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨ P ))) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((¬(A ∨ (Q ∨ P )) ∨
((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨ P ) ∨ ¬(A ∨ (Q ∨
P )))) → ((¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) →
(¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ((A ∨ Q) ∨ P ) ∨ ¬(A ∨

(Q ∨ P )) in 46

48 ((¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨
P ) ∨ ¬(A ∨ (Q ∨ P )))) → ((¬(A ∨ (Q ∨ P )) ∨ ((A ∨
Q) ∨ P )) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 42, 47

49 (¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 44, 48

50 (P → B) → (¬P ∨ B) replace Q by B in 13

51 (C → B) → (¬C ∨ B) replace P by C in 50

52 (C → ((A ∨ Q) ∨ P )) → (¬C ∨ ((A ∨ Q) ∨ P )) replace B by (A ∨ Q) ∨ P in 51
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53 ((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (¬(A ∨ (Q ∨
P )) ∨ ((A ∨ Q) ∨ P ))

replace C by A ∨ (Q ∨ P ) in 52

54 (D → C) → ((((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) →
D) → (((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → C))

replace B by (A ∨ (Q ∨ P )) →

((A ∨ Q) ∨ P ) in 37

55 (D → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) →
((((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → D) →
(((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 54

56 ((¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨ P )) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → ((((A ∨ (Q ∨ P )) →
((A ∨ Q) ∨ P )) → (¬(A ∨ (Q ∨ P )) ∨ ((A ∨ Q) ∨
P ))) → (((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) →
(¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ¬(A ∨ (Q ∨ P )) ∨

((A ∨ Q) ∨ P ) in 55

57 (((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (¬(A ∨
(Q ∨ P )) ∨ ((A ∨ Q) ∨ P ))) → (((A ∨ (Q ∨ P )) →
((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 49, 56

58 ((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 53, 57

59 (¬P ∨ B) → (P → B) replace Q by B in 14

60 (¬C ∨ B) → (C → B) replace P by C in 59

61 (¬C ∨ ((A ∨ Q) ∨ P )) → (C → ((A ∨ Q) ∨ P )) replace B by (A ∨ Q) ∨ P in 60

62 (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P ))

replace C by (Q ∨ P ) ∨ A in 61

63 (D → (((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P ))) →
((((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → D) →
(((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P ))))

replace C by ((Q ∨ P ) ∨ A) →

((A ∨ Q) ∨ P ) in 54

64 ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨
A) → ((A ∨ Q) ∨ P ))) → ((((A ∨ (Q ∨ P )) →
((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) →
(((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P ))))

replace D by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 63

65 (((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((A ∨ (Q ∨ P )) →
((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )))

MP with 62, 64

66 ((A ∨ (Q ∨ P )) → ((A ∨ Q) ∨ P )) → (((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P ))

MP with 58, 65

67 ((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P ) MP with 7, 66

68 (D → C) → ((A ∨ D) → (A ∨ C)) replace B by A in 24

69 (D → (Q ∨ P )) → ((A ∨ D) → (A ∨ (Q ∨ P ))) replace C by Q ∨ P in 68

70 ((P ∨ Q) → (Q ∨ P )) → ((A ∨ (P ∨ Q)) →
(A ∨ (Q ∨ P )))

replace D by P ∨ Q in 69

71 (A ∨ (P ∨ Q)) → (A ∨ (Q ∨ P )) MP with 29, 70

72 (C ∨ (Q ∨ P )) → ((Q ∨ P ) ∨ C) replace B by Q ∨ P in 31

73 (A ∨ (Q ∨ P )) → ((Q ∨ P ) ∨ A) replace C by A in 72

74 (D → C) → (((A ∨ (P ∨ Q)) → D) → ((A ∨ (P ∨
Q)) → C))

replace B by A ∨ (P ∨ Q) in 37

75 (D → ((Q ∨ P ) ∨ A)) → (((A ∨ (P ∨ Q)) → D) →
((A ∨ (P ∨ Q)) → ((Q ∨ P ) ∨ A)))

replace C by (Q ∨ P ) ∨ A in 74

76 ((A ∨ (Q ∨ P )) → ((Q ∨ P ) ∨ A)) → (((A ∨ (P ∨ Q)) →
(A ∨ (Q ∨ P ))) → ((A ∨ (P ∨ Q)) → ((Q ∨ P ) ∨ A)))

replace D by A ∨ (Q ∨ P ) in 75
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77 ((A ∨ (P ∨ Q)) → (A ∨ (Q ∨ P ))) → ((A ∨ (P ∨ Q)) →
((Q ∨ P ) ∨ A))

MP with 73, 76

78 (A ∨ (P ∨ Q)) → ((Q ∨ P ) ∨ A) MP with 71, 77

79 (C ∨ A) → (A ∨ C) replace B by A in 31

80 ((P ∨ Q) ∨ A) → (A ∨ (P ∨ Q)) replace C by P ∨ Q in 79

81 (D → C) → ((((P ∨ Q) ∨ A) → D) → (((P ∨
Q) ∨ A) → C))

replace B by (P ∨ Q) ∨ A in 37

82 (D → ((Q ∨ P ) ∨ A)) → ((((P ∨ Q) ∨ A) → D) →
(((P ∨ Q) ∨ A) → ((Q ∨ P ) ∨ A)))

replace C by (Q ∨ P ) ∨ A in 81

83 ((A ∨ (P ∨ Q)) → ((Q ∨ P ) ∨ A)) → ((((P ∨ Q) ∨ A) →
(A ∨ (P ∨ Q))) → (((P ∨ Q) ∨ A) → ((Q ∨ P ) ∨ A)))

replace D by A ∨ (P ∨ Q) in 82

84 (((P ∨ Q) ∨ A) → (A ∨ (P ∨ Q))) → (((P ∨ Q) ∨ A) →
((Q ∨ P ) ∨ A))

MP with 78, 83

85 ((P ∨ Q) ∨ A) → ((Q ∨ P ) ∨ A) MP with 80, 84

86 (C → ((Q ∨ P ) ∨ A)) → (¬((Q ∨ P ) ∨ A) → ¬C) replace B by (Q ∨ P ) ∨ A in 17

87 (((P ∨ Q) ∨ A) → ((Q ∨ P ) ∨ A)) → (¬((Q ∨ P ) ∨
A) → ¬((P ∨ Q) ∨ A))

replace C by (P ∨ Q) ∨ A in 86

88 ¬((Q ∨ P ) ∨ A) → ¬((P ∨ Q) ∨ A) MP with 85, 87

89 (D → ¬((P ∨ Q) ∨ A)) → ((((A ∨ Q) ∨ P ) ∨ D) →
(((A ∨ Q) ∨ P ) ∨ ¬((P ∨ Q) ∨ A)))

replace C by ¬((P ∨ Q) ∨ A) in 25

90 (¬((Q ∨ P ) ∨ A) → ¬((P ∨ Q) ∨ A)) → ((((A ∨
Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (((A ∨ Q) ∨ P ) ∨
¬((P ∨ Q) ∨ A)))

replace D by ¬((Q ∨ P ) ∨ A) in 89

91 (((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (((A ∨ Q) ∨
P ) ∨ ¬((P ∨ Q) ∨ A))

MP with 88, 90

92 (C ∨ ¬((P ∨ Q) ∨ A)) → (¬((P ∨ Q) ∨ A) ∨ C) replace B by ¬((P ∨ Q) ∨ A) in 31

93 (((A ∨ Q) ∨ P ) ∨ ¬((P ∨ Q) ∨ A)) → (¬((P ∨ Q) ∨
A) ∨ ((A ∨ Q) ∨ P ))

replace C by (A ∨ Q) ∨ P in 92

94 (D → C) → (((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) →
D) → ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → C))

replace B by ((A ∨ Q) ∨ P ) ∨ ¬((Q ∨

P ) ∨ A) in 37

95 (D → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((A ∨
Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → D) → ((((A ∨ Q) ∨ P ) ∨
¬((Q ∨ P ) ∨ A)) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((P ∨ Q) ∨ A) ∨

((A ∨ Q) ∨ P ) in 94

96 ((((A ∨ Q) ∨ P ) ∨ ¬((P ∨ Q) ∨ A)) → (¬((P ∨
Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((A ∨ Q) ∨ P ) ∨
¬((Q ∨ P ) ∨ A)) → (((A ∨ Q) ∨ P ) ∨ ¬((P ∨ Q) ∨
A))) → ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) →
(¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ((A ∨ Q) ∨ P ) ∨ ¬((P ∨

Q) ∨ A) in 95

97 ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (((A ∨ Q) ∨
P ) ∨ ¬((P ∨ Q) ∨ A))) → ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨
P ) ∨ A)) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 93, 96

98 (((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (¬((P ∨ Q) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 91, 97

99 (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨
P ) ∨ ¬((Q ∨ P ) ∨ A))

replace C by ¬((Q ∨ P ) ∨ A) in 43

100 (D → C) → (((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) →
D) → ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → C))

replace B by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 37

101 (D → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → D) → ((¬((Q ∨ P ) ∨ A) ∨
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((P ∨ Q) ∨ A) ∨

((A ∨ Q) ∨ P ) in 100
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102 ((((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨ A)) → (¬((P ∨
Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((¬((Q ∨ P ) ∨ A) ∨
((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨ P ) ∨ ¬((Q ∨ P ) ∨
A))) → ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) →
(¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ((A ∨ Q) ∨ P ) ∨ ¬((Q ∨

P ) ∨ A) in 101

103 ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((A ∨ Q) ∨
P ) ∨ ¬((Q ∨ P ) ∨ A))) → ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨
Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 98, 102

104 (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 99, 103

105 (((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨
A) ∨ ((A ∨ Q) ∨ P ))

replace C by (Q ∨ P ) ∨ A in 52

106 (D → C) → (((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) →
D) → ((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → C))

replace B by ((Q ∨ P ) ∨ A) →

((A ∨ Q) ∨ P ) in 37

107 (D → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((Q ∨
P ) ∨ A) → ((A ∨Q) ∨ P )) → D) → ((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace C by ¬((P ∨ Q) ∨ A) ∨

((A ∨ Q) ∨ P ) in 106

108 ((¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (¬((P ∨
Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → (((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((Q ∨ P ) ∨ A) ∨ ((A ∨ Q) ∨
P ))) → ((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) →
(¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))))

replace D by ¬((Q ∨ P ) ∨ A) ∨

((A ∨ Q) ∨ P ) in 107

109 ((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((Q ∨
P ) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → ((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )))

MP with 104, 108

110 (((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨
A) ∨ ((A ∨ Q) ∨ P ))

MP with 105, 109

111 (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P ))

replace C by (P ∨ Q) ∨ A in 61

112 (D → (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P ))) → (((((Q ∨
P ) ∨ A) → ((A ∨Q) ∨ P )) → D) → ((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P ))))

replace C by ((P ∨ Q) ∨ A) →

((A ∨ Q) ∨ P ) in 106

113 ((¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨
A) → ((A ∨ Q) ∨ P ))) → (((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) →
((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P ))))

replace D by ¬((P ∨ Q) ∨ A) ∨

((A ∨ Q) ∨ P ) in 112

114 ((((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨
Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → ((((Q ∨ P ) ∨ A) →
((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )))

MP with 111, 113

115 (((Q ∨ P ) ∨ A) → ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P ))

MP with 110, 114

116 ((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P ) MP with 67, 115

117 (C ∨ P ) → (P ∨ C) replace B by P in 31

118 ((A ∨ Q) ∨ P ) → (P ∨ (A ∨ Q)) replace C by A ∨ Q in 117

119 (D → C) → ((¬((P ∨ Q) ∨ A) ∨ D) → (¬((P ∨
Q) ∨ A) ∨ C))

replace B by ¬((P ∨ Q) ∨ A) in 24

120 (D → (P ∨ (A ∨ Q))) → ((¬((P ∨ Q) ∨ A) ∨ D) →
(¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))))

replace C by P ∨ (A ∨ Q) in 119

121 (((A ∨Q) ∨ P ) → (P ∨ (A ∨Q))) → ((¬((P ∨Q) ∨ A) ∨
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))))

replace D by (A ∨ Q) ∨ P in 120
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122 (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨
A) ∨ (P ∨ (A ∨ Q)))

MP with 118, 121

123 (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨
A) ∨ ((A ∨ Q) ∨ P ))

replace C by (P ∨ Q) ∨ A in 52

124 (D → C) → (((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) →
D) → ((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → C))

replace B by ((P ∨ Q) ∨ A) →

((A ∨ Q) ∨ P ) in 37

125 (D → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q)))) → (((((P ∨
Q) ∨ A) → ((A ∨Q) ∨ P )) → D) → ((((P ∨Q) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q)))))

replace C by ¬((P ∨ Q) ∨ A) ∨

(P ∨ (A ∨ Q)) in 124

126 ((¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨ P )) → (¬((P ∨
Q) ∨ A) ∨ (P ∨ (A ∨ Q)))) → (((((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ ((A ∨ Q) ∨
P ))) → ((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) →
(¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q)))))

replace D by ¬((P ∨ Q) ∨ A) ∨

((A ∨ Q) ∨ P ) in 125

127 ((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨
Q) ∨ A) ∨ ((A ∨ Q) ∨ P ))) → ((((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))))

MP with 122, 126

128 (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨
A) ∨ (P ∨ (A ∨ Q)))

MP with 123, 127

129 (¬C ∨ (P ∨ (A ∨ Q))) → (C → (P ∨ (A ∨ Q))) replace B by P ∨ (A ∨ Q) in 60

130 (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))) → (((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q)))

replace C by (P ∨ Q) ∨ A in 129

131 (D → (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q)))) → (((((P ∨
Q) ∨ A) → ((A ∨Q) ∨ P )) → D) → ((((P ∨Q) ∨ A) →
((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q)))))

replace C by ((P ∨ Q) ∨ A) →

(P ∨ (A ∨ Q)) in 124

132 ((¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))) → (((P ∨ Q) ∨
A) → (P ∨ (A ∨ Q)))) → (((((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P )) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q)))) →
((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q)))))

replace D by ¬((P ∨ Q) ∨ A) ∨

(P ∨ (A ∨ Q)) in 131

133 ((((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (¬((P ∨
Q) ∨ A) ∨ (P ∨ (A ∨ Q)))) → ((((P ∨ Q) ∨ A) →
((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))))

MP with 130, 132

134 (((P ∨ Q) ∨ A) → ((A ∨ Q) ∨ P )) → (((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q)))

MP with 128, 133

135 ((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q)) MP with 116, 134

136 (C ∨ Q) → (Q ∨ C) replace B by Q in 31

137 (A ∨ Q) → (Q ∨ A) replace C by A in 136

138 (D → C) → ((P ∨ D) → (P ∨ C)) replace B by P in 24

139 (D → (Q ∨ A)) → ((P ∨ D) → (P ∨ (Q ∨ A))) replace C by Q ∨ A in 138

140 ((A ∨ Q) → (Q ∨ A)) → ((P ∨ (A ∨ Q)) →
(P ∨ (Q ∨ A)))

replace D by A ∨ Q in 139

141 (P ∨ (A ∨ Q)) → (P ∨ (Q ∨ A)) MP with 137, 140

142 (D → (P ∨ (Q ∨ A))) → ((¬((P ∨ Q) ∨ A) ∨ D) →
(¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A))))

replace C by P ∨ (Q ∨ A) in 119

143 ((P ∨ (A ∨Q)) → (P ∨ (Q ∨ A))) → ((¬((P ∨Q) ∨ A) ∨
(P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A))))

replace D by P ∨ (A ∨ Q) in 142

144 (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨
A) ∨ (P ∨ (Q ∨ A)))

MP with 141, 143

145 (C → (P ∨ (A ∨ Q))) → (¬C ∨ (P ∨ (A ∨ Q))) replace B by P ∨ (A ∨ Q) in 51

146 (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨
A) ∨ (P ∨ (A ∨ Q)))

replace C by (P ∨ Q) ∨ A in 145

propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule1
propaxiom_1.00.00_1.00.00.pdf#rule4
propaxiom_1.00.00_1.00.00.pdf#rule4


19

147 (D → C) → (((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) →
D) → ((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → C))

replace B by ((P ∨ Q) ∨ A) →

(P ∨ (A ∨ Q)) in 37

148 (D → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A)))) → (((((P ∨
Q) ∨ A) → (P ∨ (A ∨Q))) → D) → ((((P ∨Q) ∨ A) →
(P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A)))))

replace C by ¬((P ∨ Q) ∨ A) ∨

(P ∨ (Q ∨ A)) in 147

149 ((¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨ Q))) → (¬((P ∨
Q) ∨ A) ∨ (P ∨ (Q ∨ A)))) → (((((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (A ∨
Q)))) → ((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) →
(¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A)))))

replace D by ¬((P ∨ Q) ∨ A) ∨

(P ∨ (A ∨ Q)) in 148

150 ((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (¬((P ∨
Q) ∨ A) ∨ (P ∨ (A ∨ Q)))) → ((((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A))))

MP with 144, 149

151 (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (¬((P ∨ Q) ∨
A) ∨ (P ∨ (Q ∨ A)))

MP with 146, 150

152 (¬C ∨ (P ∨ (Q ∨ A))) → (C → (P ∨ (Q ∨ A))) replace B by P ∨ (Q ∨ A) in 60

153 (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A))) → (((P ∨ Q) ∨ A) →
(P ∨ (Q ∨ A)))

replace C by (P ∨ Q) ∨ A in 152

154 (D → (((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A)))) → (((((P ∨
Q) ∨ A) → (P ∨ (A ∨Q))) → D) → ((((P ∨Q) ∨ A) →
(P ∨ (A ∨ Q))) → (((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A)))))

replace C by ((P ∨ Q) ∨ A) →

(P ∨ (Q ∨ A)) in 147

155 ((¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A))) → (((P ∨ Q) ∨ A) →
(P ∨ (Q ∨ A)))) → (((((P ∨ Q) ∨ A) → (P ∨ (A ∨
Q))) → (¬((P ∨ Q) ∨ A) ∨ (P ∨ (Q ∨ A)))) →
((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (((P ∨ Q) ∨ A) →
(P ∨ (Q ∨ A)))))

replace D by ¬((P ∨ Q) ∨ A) ∨

(P ∨ (Q ∨ A)) in 154

156 ((((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (¬((P ∨
Q) ∨ A) ∨ (P ∨ (Q ∨ A)))) → ((((P ∨ Q) ∨ A) →
(P ∨ (A ∨ Q))) → (((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A))))

MP with 153, 155

157 (((P ∨ Q) ∨ A) → (P ∨ (A ∨ Q))) → (((P ∨ Q) ∨ A) →
(P ∨ (Q ∨ A)))

MP with 151, 156

158 ((P ∨ Q) ∨ A) → (P ∨ (Q ∨ A)) MP with 135, 157

Another consequence from hilb13 is the exchange of preconditions:

Theorem 0.22 (hilb16).

(P → (Q → A)) → (Q → (P → A))

Proof.

1 (P ∨ (Q ∨ A)) → (Q ∨ (P ∨ A)) add sentence hilb13

2 (P ∨ (Q ∨ B)) → (Q ∨ (P ∨ B)) replace A by B in 1

3 (P ∨ (C ∨ B)) → (C ∨ (P ∨ B)) replace Q by C in 2

4 (D ∨ (C ∨ B)) → (C ∨ (D ∨ B)) replace P by D in 3

5 (D ∨ (C ∨ A)) → (C ∨ (D ∨ A)) replace B by A in 4

6 (D ∨ (¬Q ∨ A)) → (¬Q ∨ (D ∨ A)) replace C by ¬Q in 5

7 (¬P ∨ (¬Q ∨ A)) → (¬Q ∨ (¬P ∨ A)) replace D by ¬P in 6

8 (P → (¬Q ∨ A)) → (¬Q ∨ (¬P ∨ A)) reverse abbreviation impl in 7 at oc-

curence 1

9 (P → (Q → A)) → (¬Q ∨ (¬P ∨ A)) reverse abbreviation impl in 8 at oc-

curence 1
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10 (P → (Q → A)) → (Q → (¬P ∨ A)) reverse abbreviation impl in 9 at oc-

curence 1

11 (P → (Q → A)) → (Q → (P → A)) reverse abbreviation impl in 10 at oc-

curence 1

An analogus form for hilb16:

Theorem 0.23 (hilb17).

(Q → (P → A)) → (P → (Q → A))

Proof.

1 (P → (Q → A)) → (Q → (P → A)) add sentence hilb16

2 (P → (Q → B)) → (Q → (P → B)) replace A by B in 1

3 (P → (C → B)) → (C → (P → B)) replace Q by C in 2

4 (D → (C → B)) → (C → (D → B)) replace P by D in 3

5 (D → (C → A)) → (C → (D → A)) replace B by A in 4

6 (D → (P → A)) → (P → (D → A)) replace C by P in 5

7 (Q → (P → A)) → (P → (Q → A)) replace D by Q in 6

1 Cross Reference

This module is used by the following modules:

Name: prophilbert2
Version: 1.00.00
Rule version: 1.00.00
Orgin: prophilbert2_1.00.00_1.00.00.qedeq
pdf: prophilbert2_1.00.00_1.00.00.pdf
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